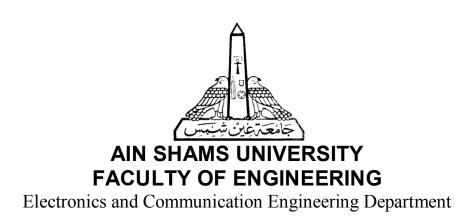


AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electronics and Communication Engineering Department

Wireless Network Traffic Modeling for Different Channel Holding Time Probability Distributions

A Thesis

Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Science in Electrical Engineering (Electronics and Communication Engineering)


Submitted By

Eng. Fadi Hassan Ahmed El-Ghitani

Supervised By

Prof. Dr. Hadya El-Hennawy Associate Prof. Dr. Hesham El-Badawy

> Cairo – Egypt 2012

Examiners Committee

Name:	Fadi Hassan Ahmed El-Ghitani
Thesis:	Wireless Network Traffic Modeling for Different Channel Holding Time Probability Distributions
Degree:	Master of Science in Electrical Engineering (Electronics and Communications Engineering)

Approved by:

Name and Title

Signature

(Examiner)

(Supervisor)

1- Prof. Dr. Magdy Saeed El Soudani

Professor in Electronics and Communication Dept.,	
Faculty of Engineering, Cairo University	(Examiner)

2- Prof. Dr. Magdy Mahmoud Ebrahem

Professor in Electronics and Communication Dept., Faculty of Engineering, Ain Shams University

3- Prof. Dr. Hadya El Hennawy

Professor in Electronics and Communication Dept., Faculty of Engineering, Ain Shams University

4- Associate Prof. Dr. Hesham El Badawy

Network Planning Department,......National Telecommunication Institute, Ministry of
Communications & Information Technology(Supervisor)

STATEMENT

This dissertation is submitted to Faculty of Engineering, Ain Shams University for the degree of Master of Science in Electrical Engineering (Electronics and Communications Engineering).

The work included in this thesis was carried out by the author at the Electronics and Communications Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any other university or institution.

Name: Fadi Hassan Ahmed El-Ghitani

Signature:

Date: //2012

To my mother who loved me, and to my father who inspired me

ABSTRACT FADI HASSAN AHMED EL-GHITANI MASTER OF SCIENCE THESIS, AIN SHAMS UNIVERSITY

The aim for the current work is to investigate and derive a model for the channel occupancy time. This had been done as well as the teletraffic performance assessment as well. Teletraffic performance (for both fixed and mobile systems) depends mainly on channel occupancy distribution and number of channels. Earlier assumptions assumed that the channel occupancy time can be modeled by exponential distribution. This will greatly simplify the problem and the system can be modeled as an M/M/c queueing system. However it has been proved that for the channel occupancy time to be strictly exponentially distributed, cellular dwell time and call duration should be exponentially distributed too. This is a very unrealistic assumption, for at least cellular dwell time distribution which depends on user mobility profile and cell geometry.

In this thesis, an algorithm for analytical modeling of mobile teletraffic performance is developed. This algorithm works for any cell dwell time distribution (distribution of time spent by users inside a cell). In order to validate the proposed analytical model, simulation model is built to compare its results to that of the analytical model. The impact of mobile system parameters such as cell radius and user speed is also investigated.

In order to test the proposed algorithm, blocking and forced termination probabilities were taken as performance metrics and were calculated under various traffic loads. To validate the obtained results, they were compared to that of a (DES) model. The results worked as expected, the more the number of phases used, the more accurate results obtained.

Key Words: Teletraffic performance, dwell time, heavy-tailed distribution, phase distribution, channel occupancy time

Thesis supervisors:

- Prof. Dr. Hadya Mohammed El-Hennawy Ain Shams University, Cairo, EGYPT.
- Associate Prof. Dr. Hesham Mohammed El-Badawy National Telecommunication Institute, Cairo, EGYPT.

ACKNOWLEDGEMENT

I would like to praise GOD for his numerous gifts to me throughout the duration of my Thesis. GOD has given me hope whenever I needed it. This work would have never seen the light without GOD's will.

I would like to present my deepest gratitude to Professor Dr. Hadya El Hennawy for her precious help, valuable guidance and continuous support. Professor Dr. Hadya inspired me a sense of enthusiasm, optimism and motivation and she provided me with a lot of her wide knowledge and experience.

I would like also to express my heart full thanks to Associate Professor Dr. **Hesham Mohammed El-Badawy** for his inspiration, valuable guidance and his great efforts in supervising my thesis. Throughout my research period, he provided me with lots of valuable ideas and many stimulating suggestions. Dr. **Hesham** gave me much of his valuable time whenever I asked and kept encouraging me to work harder. Really, I will never forget the research memories with Dr. **Hesham**.

In addition, my sincere appreciations for my colleagues, in National Telecommunication Institute (NTI), for supporting me throughout the course of this thesis.

Finally, special thanks go to my parents, who have given me help and support along the way and who have done the impossible to help get me to where I am today. All of my achievements have been due to their boundless love and support.

TABLE OF CONTENTS

<u>Page</u>

List of	Figur	es	xi
List of	Table	S	xiv
List of	Symb	ols	xv
List of	Abbro	eviations	xvii
CHAP	TER 1	I INTRODUCTION	
1.1.	Gei	neral Background	1
1.2.		blem Statement	2
1.3.	The	esis Organization	2
CHAP CONC		2 MOBILE COMMUNICATION and CELLULAR	
2.1.	Bri	ef History	3
2	2.1.1.	First Generation Cellular Networks	3
2	2.1.2.	Second Generation Cellular Networks	4
2	2.1.3.	Third Generation Cellular Networks	4
2	2.1.4.	Fourth Generation Cellular Networks	5
2.2.	Bas	sic Mobile Network Architecture	5
2.3.	Cel	llular Concept	7
2	2.3.1.	Introduction	7
2	2.3.2.	Frequency reuse	8
2	2.3.3.	Handover	11
2.4.	Rac	dio Planning and Optimization	13
2	2.4.1.	Dimensioning	14
2	2.4.2.	Coverage Planning	16
2	2.4.3.	Capacity Planning	16
2.5.	Co	nclusions	17
CHAP	TER 3	3 BIRTH-AND-DEATH QUEUEING MODELS	
3.1.	Intr	roduction	19

3.2.	Basic Characteristics	19
3.2	1. The Input or Arrival Pattern of Customers	20
3.2	2. The Pattern of Service	20
3.2	3. The Number of Servers or Service Channels	21
3.2	4. The Capacity of the System	21
3.2	5. The Queue Discipline	21
3.3.	Markov Chains and Birth-Death Process	22
3.3	1. Markov Process	22
	3.3.1.1. Discrete-Time Markov Chains	25
	3.3.1.2. Continuous-Time Markov Chains	29
3.3	2. Birth-Death Processes	37
	3.3.2.1. M/M/1 Queue	37
	3.3.2.2. General Birth-Death Processes	42
	3.3.2.3. Multi-Server Systems	45
3.4.	Conclusions	46
CHAPTE DISTRIE	CR 4 TRAFFIC CONCEPTS AND DWELL TIME BUTION	
4.1.	Concept of Traffic and Traffic Unit	48
4.2.	The Blocking Concept	49
4.3.	Mobile Communications Teletraffic Modeling	50
4.4.	The Exponential Model	53
4.5.	Inadequacy of the Exponential Model	57
4.6.	Cellular Dwell Time Modeling	60
4.6	1. Analytical Modeling	60
4.6	2. Simulation Modeling	66
4.7.	Conclusions	69
CHAPTE TIME	CR 5 ANALYTICAL MODELING UNDER GENERAL D	VELL
5.1.	System Model	70
5.2.	Analytical Modeling	71
5.2		71
5.2	2. Calculation Of Dwell Time Distribution	71

5.2.	.2.1. Proposed Simulation Algorithm
5.2.	.2.2. Algorithm Testing
5.2.3.	Approximation of Dwell Time Distribution by aSuitable Phase Distribution
5.2.	.3.1. Approximation via Moment Matching
4	5.2.3.1.1. Matching the First Moment
	5.2.3.1.2. Matching the First Two Moments
	5.2.3.1.3. Matching the First Three Moments
5.2.	.3.2. Approximation via Curve Fitting
4	5.2.3.2.1. Introduction
	5.2.3.2.2. Fitting using Hyper-Exponential Distribution 90
5.2.4.	Integrating Phase Distribution into an (MDBD)Process
5.3. Bu	ilding Simulation Model
5.3.1.	Events Generation
5.3.2.	Finite State Machine99
5.3.3.	Collecting Statistics
5.3.4.	Simulation Model Validation
5.4. Nu	imerical Results
5.4.1.	Dwell Time Distribution104
5.4.2.	Blocking and Forced Termination Probabilities 106
5.4.3.	Effect of Changing Cell Radius and User Maximum Speed
5.5. Co	nclusions
CHAPTER	6 CONCLUSION AND FUTURE WORK
6.1. Co	onclusion 111
6.2. Fu	ture Work 112
Appendix A	Brief Tutorial on Phase Type Distributions 113
Appendix B	Numerical Solution of Markov Chains 117
EXTRACTE	ED PAPERS 126
REFERENC	CES 127

LIST OF FIGURES

Figure

<u>Page</u>

Figure 2.1	GSM system architecture	6
Figure 2.2	Illustration of the cellular frequency reuse concept	10
Figure 2.3	Intracell and Intercell Handover	12
Figure 2.4	Radio System Planning Process Phases and their Key Parameters	14
Figure 3.1	M/M/1 Queue	37
Figure 3.2	Markov Chain representing M/M/1 Queueing System	39
Figure 3.3	Markov Chain of a General Birth-Death Process	43
Figure 3.4	Multiserver Queueing System	45
Figure 3.5	Markov Chain for Multiserver Queueing System	46
Figure 4.1	An Arbitrary Mobile User Trajectory	52
Figure 4.2	Markov Chain for an M/M/c Queue of zero Queue Length	54
Figure 4.3	Dividing Call Duration among Channel Occupancy Times	56
Figure 4.4	Illustration of distance from point A (where the call is originated)to point C (where the user exits the cell)	60
Figure 4.5	Residual Dwell Time PDF for $t_{th} = \frac{2R}{V_{max}} = 10$ seconds	64
Figure 4.6	Illustration of distance from point A (where the call is originated) to point C (where the user exits the cell) for handoff call	65
Figure 4.7	Handoff Call Dwell Time PDF for $t_{th} = \frac{2R}{V_{max}} = 10$ seconds	66
Figure 4.8	Trajectories of five sample users passing through a cell of 3 Km radius	67

Figure 4.9	New Call Cellular Dwell Time Distribution using Simulation and its Approximating Gamma Distribution	68
Figure 4.10	Handoff Call Cellular Dwell Time Distribution using Simulation and its Approximating Gamma Distribution	68
Figure 5.1	Algorithm for calculation of dwell time sample	74
Figure 5.2	New Call Dwell Time Distribution for Simple User Mobility Profile	76
Figure 5.3	Handoff Call Dwell Time Distribution for Simple User Mobility Profile	76
Figure 5.4	Markov Chain representing a Single Phase Distribution	79
Figure 5.5	Markov Chain representing two phase Erlang distribution	79
Figure 5.6	Markov Chain representing two stage hyperexponential distribution	82
Figure 5.7	Markov Chain representing n-phase Erlang-Coxian phase distribution	85
Figure 5.8	EC-distribution is combined to an exponential distribution in parallel	88
Figure 5.9	EC-distribution is combined to an exponential distribution in series	88
Figure 5.10	Phase Diagram of Hyperexponential Distribution	91
Figure 5.11	Two-Phase, Three stage phase distribution	94
Figure 5.12	Discrete Event Simulation Steps	98
Figure 5.13	Algorithm that controls transition between system states	101
Figure 5.14	Blocking probability results for both simulation and Erlang-B formula	103
Figure 5.15	Complementary CDF of cell dwell time	104
Figure 5.16	Original distribution cdf (solid line) and fitting hyperexponential distributions of (single-phase, 2- phases, 3-phases	106

Figure 5.17	Call blocking probability under original cell dwell time distribution (using simulation) vs. single, 2- phases and 3-phases hyperexponential distributions	107
Figure 5.18	Forced termination probability under original cell dwell time distribution (using simulation) vs. single, 2-phases and 3-phases hyperexponential distributions	108
Figure 5.19	Blocking and forced termination probabilities vs. cell radius	109

Figure 5.20 Blocking and forced termination probabilities vs. *109* user maximum speed

LIST OF TABLES

<u>Table</u>

<u>Page</u>

Table 4.1	Types of Loss Performance Measures	50
Table 4.2	Difference between time intervals used in teletraffic modeling	51
Table 5.1	Comparison between the three solutions for matching the first three moments using EC distribution	86
Table 5.2	Cellular dwell time parameters used in simulation	104
Table 5.3	System parameters used in analytical modeling	106

LIST OF SYMBOLS

а	Demand for service
A	Offered traffic
A _c	Carried traffic
A_l	Rejected traffic
С	Number of channels available in a system or cell
C_h	Number of channels reserved for handoff calls only
\overline{h}	Average number of handovers per call
$p_{ij}(n)$	Single-step transition probability from state <i>i</i> to state <i>j</i>
P_B	Blocking Probability
P_{FT}	Forced Termination Probability
P(n)	Single-step transition probability matrix
$q_{ij}\left(t ight)$	Average transition rate from state <i>i</i> to state <i>j</i>
Q(t)	Average transition rate matrix
R	Cell radius
T_{Ch}	Channel Occupancy Time for handoff calls
T _{Cn}	Channel Occupancy Time for new calls
T_D	Cellular Dwell Time
T_{DN}	Cellular Dwell Time for new calls
T_S	Unencumbered session time
T_r	Residue of session time
V _{max}	User maximum speed
α	Maximum drift
λ	Average arrival rate
λ_h	Average arrival rate for handoff calls
λ_n	Average arrival rate for new calls
μ	Mean service rate
μ_{C}	Channel release rate
π	Steady-state probability distribution