Expression of Epidermal Growth Factor Receptor and Transforming Growth Factor Alpha in Chronic Bladder Lesions

Thesis

Submitted For Partial Fulfillment of Master Degree

In pathology

By

Amira Kamel Abd Raboh

M.B., B.Ch. Cairo University

Supervised by

Prof. Dr. Ali El-Hindawi

Chairman of Pathology Department

Faculty of Medicine-Cairo University

Prof. Dr. Afkar Abd El-Ghany

Chairman of Pathology Department

Theodor Bilharz Research institute

Dr. Mostafa Khodair

Lecturer of Pathology

Faculty of Medicine-Cairo University

Faculty of Medicine-Cairo University 2013

Acknowledgement

First of all, I wish to express my sincere thanks to **ALLAH** for his care and generosity all through my life.

I am greatly honored to express my deep thanks and gratitude to **Prof. Dr.Ali El-Hidawi**, Professor of pathology, χ chairman of the pathology department, and χ chairman of Tumor markers unit, Faculty of medicine, cairo University, for his cotinuous support and guidance, valuable suggestions, expert advice and generous help which have greatly helped me to complete this work.

I would like to express my deepest thanks and state great appreciation to **Prof. Dr. Afkar Abdel-Ghany**, chairman of pathology department ,Theodor Bilharz Research Institute for her kind supervision, great Support, encouragement and her generosity in time and effort.

I would like to express my sincere appreciation and deep gratitude to **Prof Dr.Olfat Hammam** Professor of pathology Theodor Bilharz Research Institute for her continous effort, valuable advice, great help and kind cooporation all through this work.

I would like to thank **Dr. Mostafa Khodair**, lecturer of pathology, faculty of medicine, cairo university.

Lastly, I want to express my deep thanks to My Parents & my husband, without their help, kind, great support and encouragement, this work could not have been completed.

🖎 Amira Kamel

ABSTRACT

Objectives:

Evaluation of the expression of EGFR and TGF alpha in the urothelial cells of neoplastic and non-neoplastic urothelial lesions of the urinary bladder, and correlation with tumor grade, stage and associated bilharziasis.

Material and Methods:

Fifty five different urinary bladder lesions were studied. Data concerning age, sex, tumor grade, stage, and associated bilharziasis were obtained. Each case was studied using monoclonal antibodies for EGFR and TGF alpha and examined for detection of immunostaining in urothelial cells.

Results:

Bladder cancer had highest incidence of cystitis in fourth decade while of bladder cancer was in seventh decade . Tumor grade was correlated significantly with tumor stage. EGFR correlates significantly with tumor grade , stage and with bilharzial association. TGF alpha positively correlates with tumor grade , stage and bilharzial association ,but not significantly.

Conclusions:

EGFR and TGF alpha overexpression in malignant cases were significantly higher than in chronic cystitis.

Key Words:

EGFR, TGF alpha, urothelial bladder lesions, cystitis, carcinoma.

Contents

Subjects	Page
List of Abbreviations	I
• List of Tables	II
• List of Graphs	IV
List of Histograms	V
• List of Figures	VII
• Introduction	1
• Aim of the Work	5
Review of literature	6
Materials & Methods	
• Results	
• Discussion	
• Summary	
Conclusion & Recommendations	
References	
• Arabic Summary	

List of Abbreviations

AJCC	: American joint committee of cancer
APUD cells	: Amine precursor uptake and decarboxylation cells.
CIS	: Carcinoma insitu
EGFR	: Epidermal growth factor receptor
H-B EGF	: Heparin- Binding EGF
M AP K	Mitogen activated protein kinase
MAbs	: Humanized monoclonal antibodies
NSAIDs	: Nonsteroidal anti inflammatory drugs
PAS	: Periodic acid schiff
РІЗ-К	: Phosphatidyl inositol 3 kinase
RB	: Retinoblastoma gene
RTKs	: Receptor tyrosine kinases
S.	: Schistosoma
SCC	: Squamous cell carcinoma
TCC	: Transitional cell carcinoma
TGF a	: Transforming growth factor alpha
VS	: Versus
WHO	: World health organization

List of Tables

Table No.	Title	Page
Table (1)	Histologic gradation of schistosomal urinary	15
	bladder disease.	
Table (2)	TNM classification of urothelial carcinoma	22
Table (3)	Urinary bladder staging form	27
Table (4)	Urinary bladder staging form	28
Table (5)	Histologic comparison between reactive	43
	urothelium, hyperplasia, dysplasia & CIS.	1
Table (6)	Sex distribution in different lesions studied.	74
Table (7)	Age distribution among patients studied.	76
Table (8)	Incidence of Bilharzial Association in different	77
	pathological lesions studied	
Table (9)	Presented Grades in different malignant	78
	lesions studied.	
Table (10)	Presented Stages in Different Malignant	79
	lesions studied.	
Table (11)	Relation between different grades and stages	81
	in different malignant studied lesions.	
Table (12)	Effect of Bilharzial association on Tumor	82
	Grade.	
Table (13)	Effect of bilharzial association on tumor stage.	83
Table (14)	Extent and Intensity of EGFR expression in	84
	studied cases.	
Table (15)	Effect of Bilharzial association on EGFR	86
	Extent and intensity of Expression.	
Table (16)	Extent and intensity of EGFR Expression in	88
	different malignant cases.	0.5
Table (17)	EGFR Expression and intensity of different	89
	studied malignant stages.	

😴 List of Tables 🙇

Table No.	Title	Page
Table (18)	EGFR Expression and Intensity of different	90
	studied malignant Stages in TCC.	
Table (19)	EGFR Expression and Intensity of different	91
	studied malignant Stages in SCC.	
Table (20)	Extent and intensity of EGFR expression in	92
	different studied grades.	
Table (21)	Extent and Intensity of EGFR Expression in	94
	Different Studied Grades of TCC.	
Table (22)	Extent and Intensity of EGFR Expression in	96
	Different Studied Grades.	
Table (23)	Extent and intensity of TGF alpha expression	97
	in different studied cases.	
Table (24)	Effect of Bilharzial association of TGF alpha	99
	extent and intensity of expression.	
Table (25)	TGF alpha expression in different malignant	101
	studied cases.	
Table (26)	Extent and intensity of TGF alpha expression	102
	in different malignant stages.	
Table (27)	Extent and Intensity of TGF alpha Expression i	103
	different studied Stages in TCC.	
Table (28)	Extent and Intensity of TGF alpha Expression	104
	in different studied Stages in SCC.	
Table (29)	Extent and intensity of TGF alpha expression	106
	in different malignant grades.	
Table (30)	Extent and Intensity of TGF alpha Expression i	107
	different studied Grades in TCC.	
Table (31)	Extent and Intensity of TGFalpha Expression	109
	in different studied Grades in SCC.	
Table (32)	Correlation of EGFR and TGF alpha	110
	Expression to Bilharzial Association and to	
	Malignancy Grades and Stages.	

List of Graphs

No.	Title	Page
Graph (1)	The normal histology of urinary bladder	7
Graph (2)	Diagram shows the stages of tumor invasion in	28
	bladder cancer.	
Graph (3)	Important domains of the EGFR	54
Graph (4)	Mechanism of action	55

List of Histograms

No.	Title	Page
Histograms (1)	Sex distribution in different lesions studied.	75
Histograms (2)	Age distribution among patients studied.	76
Histograms (3)	Incidence of Bilharzial Association in different	78
	pathological lesions studied.	
Histograms (4)	Presented Grades in different malignant lesions	79
	studied.	
Histograms (5)	Presented Stages in Different Malignant lesions	80
	studied.	
Histograms (6)	Relation between different grades and stages in	81
	different malignant studied lesions.	
Histograms (7)	Effect of Bilharzial association on Tumor Grade.	82
Histograms (8)	Effect of bilharzial association on tumor stage.	83
Histograms (9)	Intensity of EGFR expression in positive studied	85
	cases.	
Histograms (10)	Effect of Bilharzial association on EGFR intensity	87
	of Expression.	
Histograms (11)	Intensity of EGFR Expression in different	88
	malignant cases.	
Histograms (12)	EGFR expression intensity of different studied	90
	malignant stages.	
Histograms (13)	EGFR Expression intensity of different studied	91
	malignancy Stages in TCC.	
Histograms (14)	EGFR Expression intensity of different studied	92
	malignant Stages in SCC.	

🕃 List of Histograms 🗷

No.	Title	Page
Histograms (15)	Intensity of EGFR expression in different studied	93
	grades.	
Histograms (16)	Intensity of EGFR Expression in Different Studied	95
	malignancy Grades of TCC.	
Histograms (17)	Intensity of EGFR Expression in Different Studied	96
	Gradesof SCC.	
Histograms (18)	Intensity of TGF alpha expression in different	98
	studied cases.	
Histograms (19)	Effect of Bilharzial association of TGF alpha	100
	intensity of expression.	
Histograms (20)	TGF alpha expression in different malignant studied	101
	cases.	
Histograms (21)	Intensity of Expression in different studied stages.	102
Histograms (22)	Intensity of TGF alpha Expression in different	103
	studied Stages in TCC.	
Histograms (23)	Extent and Intensity of TGF alpha Expression in	105
	different studied Stages in SCC.	
Histograms (24)	Intensity of TGF alpha expression in different	106
	malignant grades.	
Histograms (25)	Intensity of TGF alpha Expression in different	108
	studied Grades in TCC.	
Histograms (26)	Intensity of TGF alpha Expression in different	109
	studied Grades in SCC.	

List of Figures

No.	Title	Page
Figure (1)	Normal urothelium with preserved	112
	umbrella cells (Hx & Ex 200).	
Figure (2)	Mild cystitis (Hx & Ex 100).	112
Figure (3)	Bilharzial cystitis with calcified bilharzial ova (arrows) (Hx E, x 200).	113
Figure (4)	Transitional cell carcinoma Grade II (Hx & E x 200).	113
Figure (5)	Transitional cell caranoma, Grade III (Hx	114
	& E x 200).	
Figure (6)	Well differentiated squamous cell	114
	carcinoma, (Grade I) (Hx & E x 200).	
Figure (7)	Moderatly differentiated squamous cell carcinoma (Grade II), (Hx & E x 200).	115
Figure (8)	Normal urothelium showing negative EGFR immunostaining (IHC, EGFR, DAB, x400).	115
Figure (9)	Bilharzial cystitis, showing mild EGFR	116
	immunoreactivity in urothelial cells, (IHC, EGFR, DAB, x 200).	
Figure (10)	Chronic polypoid cystitis showing mild EGFR immunoreactivity in urothelial cells (IHC, EGFR, DAB, x 200).	116
Figure (11)	Transitional cell caracinoma, Grade I	117
	showing moderate EGFR	
	mmunoreactivity in malignant urothelial	
	cells, (IHC, EGFR, DAB, x 200).	
Figure (12)	Transitional cell caracinoma, Grade II showing moderate EGFR immunoreactivity in malignant cells,	117

🕏 List of Figures 🗷

No.	Title	Page
	(IHC, EGFR, DAB, x 400)	
Figure (13)	Transitional cell carcinoma, Grade II	118
	showing marked EGFR	
	immunoreactivity in malignant cells	
	(IHC,EGFR, DAB, x 400).	
Figure (14)	Transitional cell caracinoma, Grade III showing moderate EGFR immunoreactivity in malignant cells, (IHC EGEP DAP x 400)	118
Figure (15)	Squamous cell carcinoma Grade II	119
1 igui (15)	showing showing moderate ECEP	117
	immunoroactivity in malignant calls	
	associated with bilharziasis (IHC, EGFR,	
	DAB, x 400).	
Figure (16)	Squamous cell carcinoma, Grade III showing marked EGFR immunoreactivity in malignant urothelial cells (IHC, EGFR, DAB, x 400).	119
Figure (17)	Squamous cell carcinoma, Grade III showing marked EGFR immunoreactivity in malignant cells (IHC, EGFR, DAB, x 200).	120
Figure (18)	Normal urothelium, showing mild TGF alpha immunoreactivity in urothelial cells (IHC, TGF α , DAB, x 200).	120
Figure (19)	Chronic non- specific cystitis showing, mild TGF alpha immunoreactivity in urothelial cells (IHC, TGF α, DAB, x 200).	121
Figure (20)	Bilharzial cystitis, showing mild TGF alpha immunoreactivity in urothelial cells (IHC, TGF α , DAB, x 200).	121
Figure (21)	Papillary transitional cell carcinoma Grade II, showing marked TGF alpha immunoreactivity in malignant cells (IHC, TGF α , DAB, x 400).	122

🕏 List of Figures 🗷

No.	Title	Page
Figure (22)	Transitional cell carcinoma grade III,	122
	showing marked TGF alpha	
	immunoreactivity in malignant cells	
	(IHC, TGF α, DAB, x 200).	
Figure (23)	Squamous cell carcinoma, Grade I	123
	associated with biharziasis (arrow),	
	showing mild TGF alpha	
	immunoreactivity in malignant cells	
	(IHC, TGF α, DAB, x 200).	
Figure (24)	Squamous cell carcinoma, Grade II	123
	associated with biharziasis, showing	
	marked TGF alpha immunoreactivity in	
	malignant cells (IHC, TGF a, DAB, x	
	200).	
Figure (25)	Squamous cell carcinoma Grade II,	124
	showing moderate TGF alpha	
	immunoreactivity in Grade III cells (IHC,	
	TGF α, DAB, x 200)	
Figure (26)	Squamous cell carcinoma, Grade II,	125
	showing marked TGF alpha	
	immunoreactivity in malignant cells	
	(IHC, TGF α, DAB, x 200).	
Figure (27)	Squamous cell carcinoma associated with	125
	biharziasis, Grade II, showing mild TGF	
	alpha immunoreactivity malignant cells	
	(IHC, TGF α, DAB, x 200).	

Introduction

Bladder cancer is the most common malignancy involving urinary system, the fourth most incident cancer in males, and the ninth most incident in females (*Jemal et al., 2010*).

Urothelial bladder cancers have identified multiple risk factors (*Jemal et al., 2010*). In Egypt bladder cancer accounts for about 30% of all cancers, with many pathogenetic factors most commonly bilharzial infestation, which is an endemic disease in Nile river (*Ashley et al., 2008*).

Bladder cancer arises primarily from transitional cells of bladder mucosal epithelium and may be present as non invasive papillary or non papillary tumors (*Michaud et al., 2001*).

Interaction between transitional cell carcinoma cells and the adjacent or underlying bladder stroma may be an important determinant in the progression of superficial to invasive disease (*Pritchett et al., 1989*).

The Epidermal growth factor receptor (EGFR)/ human epidermal growth receptor (HER1) and its ligands epidermal growth factor (EGF) and Transforming growth factor alpha (TGF- α) are important in cell proliferation, as well as motility, adhesion, invasion, survival and angiogenesis (*Gibbs, 2000*).

The EGFR is the first described member of a family of related transmembrane receptor tyrosine kinases. It is comprised of the following four related receptors: EGFR itself (ERBB1) or HER1, ERBB2 (HER2/neu), ERBB3 (HER3) and ERBB4 (HER4) (*Bekaii et al., 2006*).

1