

Kinetics of polymerization and co-polymerization of vinyl type monomers and their applications in the industry of textiles and paints

Thesis

Submitted For the Requirements of the Degree of Ph.D.

By

(Waseem Abd El- Latif Abd El-Mawgood)

Master of Science 🔨 🕫

to

The Chemistry Department

Faculty of Science

Ain Shams University

Kinetics of polymerization and co-polymerization of vinyl type monomers and their applications in the industry of textiles and paints

Thesis

Submitted For the Requirements of the Degree of Ph.D

In Chemistry

By (Waseem Abd El- Latif Abd El-Mawgod)

Thesis advisors

Prof. Dr.Abdel – Rahman M.Mousa Prof of physical chemistry and polymers Faculty of Science, Ain shams University.

The Late Prof Dr . El-Sayed Aly Hassan Professor of Polymer Chemistry Chemistry Department Faculty of Science Al-Azhar University

Head of Chemistry Department Prof Dr. Maged Shafik Antonious nakhla

List of contents

List of contents	I
Acknowledgment	IV
List of abbreviations	V
Chemical structure of prepare homopolymers and copo	lymers.VII
Abstract	VIII
List of tables	IX
List of figures	X
Chapter.I Introduction	، ۱
I - Polymers of acrylic acid and its derivatives	،،
I -a Preparation of	
Polymers	
I- b Polymers of AA salts	٤٤
I-c Acrylamide Polymers	۳۲
I- d Acrylic Ester Polymers	۲۲
II- Copolymerization	
III-Copolymer and sizing	۱۳
III-a The function of the size	۱۸
III-b Sizing methods	۲۱
IV- Polyacrylic acid as a Chelant and dispersant	
V- Thickeners for textile printing	۲۸
V-a Inverse dispersion polymerization of AA using wa	ter soluble
redox initiators, to be used as thickener	
VI-High molecular weight PAam asflocculants	
VI-a Classification of flocculants	٣٤
VI-a-1 Inorganic flocculants	٣٤
V-a- ^Y Natural Organic flocculants	۳٥

VI-b Synthetic Organic flocculants
VI-b-) Chemical
structure٣٦
Chapter.II Object of Investigation٣٩
Chapter.III Experimental٤
III-a Material٤١
III-b Equipments٤٣
III-c Laboratory techniques٤٦
III-c-) Polymer
Synthesis٤٦
III-c- ^ү Copolymer Preparation as Sizing Solution ^٤ ٦
III-c- ⁷ Synthesis of PolyAcrylic Acid for application as Chelant
and Dispersant٤٧
III-c- [£] Synthesis of poly acrylic acid by inverse dispersion [£] ^A
III-c-° Estimation of unreacted monomers٤٨
III-d Large scale production٤٩
Chapter IV. Results and Discussion
IV-a Mechanism of free radical polymerization by
persulfate°
IV-b Synthesis of the homo polymers from Acrylic Acid,
Methacrylic acid and Acryl
amide o £
IV-b-) Effect of monomer concentration on the viscosity of the
produced polymer
IV-b- ⁷ Effect of initiator concentration on the viscosity of the
obtained polymer solution

IV-b- [°] Effect of addition time of monomers and initiator simulta-
neously on the viscosity of the obtained polymer solution
IV-b- [£] Effect of temperature on the viscosity of the obtained
productsov
IV-b-° Effect of the time of reaction on the conversion of mono-
mers°A
IV-c Prepartion of co-polymers suitable for producing sizing
films°
٩
IV-d Synthesis of (AA-MAA) copolymers for application as
dispersing agents and chelants
IV-e Copolymer composition
IV-f The role of(MAA-AA)copolymer as dispering agent in the
formulation of emulsion and paste paints
IV-g Polyacrylic acid- methacrylic acid as chelating agent ¹⁰
IV-h Study of the validity of PAam as flocculating agent
IV-i Application of high m.wt PAA as a thickener for textile
printing٦٨
IV-j Analysis and Testing of the prepared polymers and copoly-
mers
IV-j-1 Nuclear magnetic resonance (1HNMR)
IV-j-ř FTIR
IV-j- TGA
٨٣
IV-j- ٤ DSC
IV-j-° Gel Permeation Chromatography(GPC)for molecular
weight determination

Chapter V. Industrial Application	٩٨
Summary and	
Conclusions	
References	.1.0
الملخص العربي	

ACKNOWLEDGMENT

To acknowledge my sincere gratitude to all those who taught me chemistry and still do, words will be undeniably unjust.

This work is dedicated to the memory <u>of the late</u> <u>prof. Dr El-</u> <u>Sayed, A.Hassan</u>, professor of polymer chemistry, Faculty of Science, Al-Azhar University who died on April ⁷...⁹.

My gratitude is also to Prof. Dr. Abdel-Rahman M Mousa professor of Polymer Chemistry, Faculty of Science, Ain Shams University, for his endless effort and continuous supervision, valuable discussions, and guidance which made this work fruitful, practical and acceptable.

My thanks are also due to Dr. Omaima El-Sayed Mousa, Researcher at the Institute of Petroleum Research for helping carrying out some practical work and analysis.

Abbrevia	
A am	Acrylamide
AA	Acrylic acid
AN	Acrylonitrile
AIBN	Azobisisobutyronitrile
BP	benzoyl peroxide
bp.	Boiling point
BA	Butyl acrylate
DSC	Differential Scanning Colorimetry
EA	Ethyl acrylate
Glacial Ac.A	Glacial acetic acid
Tg	Glass transition temperature
HNMR	Hydrogen Nuclear Magnetic Resonance
IR.	Infra red Spectra.
Мр	Melting point
T _m .	Melting temperature
M.wt	Molecular weight
MAA	Methacrylic acid
MA	Methyl acrylate
MMA	Methyl methacrylate
Mn	Number average molecular weight
TGA	Thermo-gravimetric analysis
NaOH	Sodium hydroxide
η	Apparent viscosity
mpa.S	milipaschall.second
PAA	Plyacrylic acid
PMAA	Poly methacrylic acid

List of abbreviations

PAam	Poly acrylamide	
PVA	Poly vinyl alcohol	
Chelating agents	Are chemicals that form soluble, complex	
	molecules with certain metal ions, inactivating the	
	ions so that they cannot normally react with other	
	elements or ions to produce precipitates or scale.	
Dispersing agents	Are chemicals that are added to a suspension,	
	usually a colloid, to improve the separation of	
	particles and to prevent settling or clumping.	
	Are substances that are used to optimize the	
Flocculants	separation of the solid phase from the liquid phase	
	in aqueous suspensions.	
	Are substances which increase the of a solution	
Thickening	ar liquid/calid mixture without substan tielly	
agents		
	modifying its other properties.	
Tantila Cinina	Are substances that are applied to the yarns to	
i extile Sizing	make it more resistant to the frictional processes	
Agents	that take place during weaving	

Chemical structure of prepare homopolymers and copolymers

Abbreviation	Name	Chemical structure
РАА	Polyacyclic acid	Ссн2-сн_п соон
PMAA	Poly methacrylic acid	СH2-С(СH2) СООН
PA am	poly acrylamid	
AA,MAAcopo lymers	Acrylic acid, methacrylic acid copolymers	$- \underbrace{ cH_2 - cH_{1n}}_{COOH} \underbrace{ cH_2 - c(cH_0)}_{Tin}$
MA,AN,MMA ,AA,tetramer	Methyl acrylate, acrylonitryl, methyl methacrylate, acrylic acid, tetramer	$- CH_2 - CH_$

ABSTRACT

Waseem Abd –Elatif Abd El Mawgood

Kinetics of polymerization and co-polymerization of vinyl type monomers and their application in the industry of textiles and paints.

Unpublished Doctor in chemistry, Ain Shams University, $\gamma \cdot \gamma \gamma$. This work is undertaken with.

`- Systematic study of the preparation of homopolymers of AA, MAA and Aam monomers, where the optimum conditions of the reactions, such as the concentration of monomer and initiator , method of their addition , overall reaction temperature and time of conducting the reactions were evaluated.

Y- Systematic study of preparation of different co- polymers suitable for producing sizing films on the fibers ,using different ratios of selected monomers such as (MA, AN, MMA and AA) where MA, AA impart adhesive properties, and MMA and AN impart hardness properties.

r-Synthesis of (AA-MAA) co-polymer for applications as dispersing agents and chelants.

²-Study of the validity of PA.am as flocculating agent.

• Application of high M.wt PAA as a thickener for textile printing

[¬]-Estimation of the physical characteristics of the obtained polymers and co-polymers by using HNMR, DSC, TGA, FT-I.R and GPC analysis.

^V. Industrial application of the produced materials

LIST OF Tables

Table()	Free radical polymerization data
Table(۲)	Inorganic flocculants
Table(^r)	Synthetic organic flocculants
Table (٤)	Variation of the viscosity of the obtained polymer solution with concentration of used monomer.
Table (°)	Variation of the viscosity of the obtained polymer solution with initiator concentration.
Table (٦)	Variation of the viscosity of the obtained polymer solution with addition time of reactants.
Table (^v)	Variation of the viscosity of the obtained polymer solution with reaction temperature.
Table(^)	Effect of reaction time on conversion of monomers
Table (٩)	Effect of the composition of reactants on the Tg and viscosity of prepared co polymer.
Table(1.)	The composition of reaction mixtures used for synthesis of dispersing and chelating agent.
Table	Synthesis of high m.wt of poly acryl amide as
(' ')	flocculating agent.
Table (17)	Synthesis of high m.wt of poly acrylic acid as thickener agent.
Table (17)	Thermal stability of the prepared homo-polymers and co-polymer.

LIST OF Figures

Figure()	Sizing process	
Figure (⁷)	Variation of the viscosity of the obtained polymer	
	solution with concentration of used monomer.	
Figure (^r)	Variation of the viscosity of the obtained polymer	
	solution with initiator concentration.	
Figure (٤)	Variation of the viscosity of the obtained polymer	
	solution with addition time of reactants.	
Figure (°)	Variation of the viscosity of the obtained polymer	
	solution with reaction temperature.	
Figure()	Effect of reaction time on conversion of monomers	
Figure (V)	H'N MR spectrum of PAA	
Figure (^)	H'N MR spectrum of PMAA	
Figure (⁹)	H'N MR spectrum of AA,MAA copolymer.	
Figure () ·)	H'N MR spectrum of PA am	
Figure (11)	IR spectrum of PMAA	
Figure (17)	IR spectrum of PAA	
Figure (۱۳)	IR spectrum of AA, MAA copolymer.	
Figure (15)	IR spectrum of PA am	
Figure (1°)	TGA for PAA	
Figure (17)	TGA for AA,MAA copolymer	
Figure (1V)	TGA for PA am	
Figure (1A)	TGA for PMAA	
Figure (19)	DSC diagram for PAA	
Figure (^ү •)	DSC diagram for PMAA	
Figure (^ү)	DSC diagram for AA,MAA copolymer	
Figure (^ү ^ү)	DSC diagram for PA am	
Figure (۲۳)	GPC diagram for PA A	
Figure (۲٤)	GPC diagram for PMAA	
Figure (^v °)	GPC diagram for AA,MAA copolymer	
Figure (^Y ⁷)	GPC diagram PA am	

Chapter.I Introduction

Vinyl polymers and copolymers, specially those of acrylic and methacrylic acids and their derivatives, cover a large range of applications such as hydro soluble dispersing agents , thickeners, flocculants, detergent auxiliaries, paints, varnishes , inks, dispersants for leather, textiles, non-woven fabrics, glues and adhesives, cleaning and waxing products, plastics and synthetic resins, synthetic rubbers and latex.[1]

Acrylamide monomer is applied as a chemical intermediate in the production of dam foundations, tunnel and sewers, and as additive for water treatment, enhance oil recovery, flocculants, paper making aids, thickeners, soil conditioning agent, sewage and waste treatment, ore processing, and pretreatment of press fabrics. PAam is water-soluble but being nonionic, the viscosity of its solution is less affected by alkali. This polymer softens at ^Y · °C. Some of the applications of its water solution are flocculation of ores, textiles sizes and retentions of paper filler. [Y]

I - Polymers of acrylic acid and its derivatives

As is the case with other addition polymers, the polymerization of AA and its derivatives is an exothermic reaction. Whatever the initiating species, the heat liberated by the polymerization of each monomer is a definite and measurable value, called the heat of polymerization. Such values are listed in Table (1) which shows the amount of heat that must be accounted for in each polymerization. This heat may be allowed to dissipate slowly by controlling the rate

of polymerization, or the polymerization may be carried out in a medium not permitting a violent-or dangerous reaction.

Monomer	Heat of homopolymerization
	(J/K)
ΔΔ	19
Aam	١٣,٨, ١٩,٨

Table (1) free radical polymerization data

In order to avoid the premature polymerization of these monomers during storage and shipment, inhibitors or refrigerators are employed. A wide variety of inhibitors is available. Among those in common use for AA and its esters are hydroquinone and the methyl ether of hydroquinone. It is customary to inhibit the monomers to assure safe storage and handling, but it is possible to use minimal concentrations that allow subsequent polymerizations to be conducted without removing the inhibitor, thus avoiding an extra manipulative procedure. [γ]

I -a. Preparation of polymers

Monomers of the AA series are generally polymerized with ease. Because of this ready polymerizability, the polymerization processes may require the separation of the inhibitor from the monomer in question by distillation, or by washing; in many cases, the process can be affected in the presence of the inhibitor.

Polymerizations may be carried out in bulk, in aqueous or organic solvent solution, in emulsion, or in aqueous dispersion. Derivatives of these polymers can also be prepared by chemical alteration of the polymer functionality. In each case, the polymerization is affected by means of a suitable **initiator** system. The particular type of initiator system is governed by the polymerization method, and may include free radical initiation (produced by either thermal or oxidation-reduction operations, or by radiation techniques), anionic initiation, and organo-metallic initiation. The **molecular weight** may be controlled by the customary methods of choice of solvent or polymerization medium, concentration of monomer in solution, concentration of initiator, temperature of polymerization, the use of chain-transfer agents, such as mercaptans, alcohols, and chlorinated compounds, as well as by certain methods peculiar to individual polymerization processes, which are mentioned in subsequent sections. [[±]]

The solution polymerization of AA may be carried out in water by heating the aqueous monomer in the presence of an initiator, such as hydrogen peroxide, potassium persulfate, or acetyl peroxide, or by initiating a redox polymerization at reduced temperatures with a system composed of potassium persulfate and sodium thiosulfate as the oxidizing-reducing pair. The molecular weight may be controlled by the use of a special chain regulating system consisting of sodium hypophosphite, NaH₂PO₃.H₂O, and copper acetate, as well as by the conventional means. Polymer solutions in organic solvents, such as methanol and dioxane, may be prepared by the use of azobisisobutyronitrile initiator (AIBN) at elevated temperatures.

A solution of AA in such solvents as benzene and n-hexane may be polymerized with an initiator, such as benzoyl peroxide (BP). [°]

at elevated temperatures to produce an insoluble polymer, which may be removed from the reaction medium by filtration.