SURGICAL MANGEMENT OF DEGENERATIVE SPONDYLOLISTHESIS

Thesis

Submitted for the Fulfillment of the MD degree in Neurosurgery

By

Ahmed Mohamed Zaater

(*M.B.*, *B. Ch.*) (*M.Sc.*)

Supervisors

Prof. Dr. Ahmed Mohammed Ahmed Issa

Professor of Neurosurgery Faculty of Medicine, Cairo University

Prof. Dr. Wael Mokthar Elmahdy

Professor of Neurosurgery Faculty of Medicine, Cairo University

Prof. Dr. Mohammed M. Mohi Eldeen

Professor of Neurosurgery Faculty of Medicine, Cairo University

Prof Dr. Yousri Anwar Ahmed Hassan

Assistant Professor of Neurosurgery Faculty of Medicine, Cairo University

> Faculty of Medicine Cairo University 2009

ACKNOWLEDGEMENT

First, I would like to express my sincerest gratitude and gratefulness to **Allah** who continues to bless and fill me with hope, faith and patience that enable me to carry out all my daily work.

I am greatly honored to express my thanks and gratitude to Prof. Dr. Ahmed Issa, Professor and Head of Neurosurgery Department, Faculty of Medicine, Cairo University, for guidance, great help encouragement and his creative support throughout the whole work up of this thesis.

I would like to express thanks and gratitude to Professor Dr. Wael Elmahdy, Professor of Neurosurgery, Faculty of Medicine, Cairo University, for his valuable help and advice for me to accomplish this work.

I am very much indebted to Dr. Mohamed Mohi Eldeen, Professor of Neurosurgery, Faculty of Medicine, Cairo University, for his kind supervision, valuable advices, constructive criticism and indispensable help throughout this work.

My deep gratitude and appreciation, great thanks to Prof. Dr. Yousri Anwar, Assistant Professor of Neurosurgery, Faculty of Medicine, Cairo University, for his generous help and continuous support throughout this work.

Last but not least, I would like to thank **my family** for their great help and support and every person who helped me during this work especially **my dear colleagues** in Neurosurgery Department, Faculty of Medicine, Cairo University, for their great help in this work.

ABSTRACT

IN A SERIES of 63 patients with degenerative spondylolisthesis, methods of surgical treatment were analyzed. Patients were divided into two groups according to surgical treatment. Two kinds of treatment: decompression only (14 patients) & decompression with instrumented (49 patients). We evaluated the surgical method of treatment, clinical and radiological outcome in the two groups. We found that fusion group has nonsignificant better outcome in improvement rate (P>0.05) than decompression only group and significantly more hospital stay (P< 0.05). And that decompression only group had significant more decrease in angle of lordosis than fusion group (P< 0.05).

KEY WORDS: Degenerative spondylolisthesis, lumbar stenosis, posterolateral fusion, transpedicular instrumentation.

CONTENTS

Introduction and Aim of the work	1
Review of Literature	3
 Anatomy of the lumbar spine 	3
 Biomechanics of lumbosacral spine 	25
 Disc Function and Dysfunction 	30
 Pathophysiology of Lumbar Spondylosis 	36
 Stability and instability of lumbosacral spine 	43
 Pathology of Spondylolisthesis 	53
 Clinical Presentation 	63
 Diagnosis of degenerative spondylolisthesis 	68
 Principles of treatment of degenerative 	72
spondylolisthesis	
Material and Methods	99
Results	121
Case Presentation	162
Discussion	168
Conclusion	
Keierences	
Arabic Summary	196

Page

LIST OF FIGURES

Figure No	Title	Page
1	The components of a lumbar vertebra	5
2	The epiphysial ring	5
3	The annulus fibrosus	6
4	The annulus is a laminated structure	6
5	Hoop stress.	7
6	A Schmorl's node	8
7	The annulus acts like a coiled spring	9
8	Diagram shows the experimental testing of vertical loading of the spine	10
9	The ligamentum flavum	11
10	The anterior longitudinal ligament (arrow) on magnetic resonance imaging (MRI)	12
11	The posterior longitudinal ligament	12
12	The correct direction of the ligamentous fibers	13
13	Six lumbar vertebrae numbered from the top down	15
14	A fixed last formed level with five lumbar vertebrae above	16
15	Five lumbar vertebrae with the last level fixed to the pelvis and non mobile	17
16	Arterial supply to the vertebrae	19
17	Venous drainage of the vertebral column	23
18	Formation and branching pattern of a typical spinal nerve	24
19	Dr. Nachemson's study that measured pressures in the L3-4 disc in varying positions	27
20	Swelling pressure balance of a disc	31
21	Disc nutrition	32
22	The three stages of disc degeneration	33
23	The phase of instability	34
24	A well-stabilized L5-S1 disc with osteophytes	34
25	On flexion-extension schematic drawn from a radiograph of an unstable segment	46
26	A schematic of a degenerative spondylolisthesis	46
27	A stair-step degenerative spondylolisthesis on flexion	54

28	The iliolumbar ligaments	55
29	A degenerative spondylolisthesis and retrospondylolisthesis	55
30	Degenerative spondylolisthesis at lateral radiograph	55
31	Diagram to show sheer through the lumbosacral disc	57
32	Diagram to show that the L5 nerve root in degenerative spondylolisthesis	62
33	Schematic drawing of a degenerative spondylolisthesis with deformation and stenosis of the spinal canal and the intervertebral	63
34	Lateral radiograph of a patient with L4-5 ischemic spondylolisthesis with an advanced slip	70
35	The lateral plain film shows a degenerative spondylolisthesis with a narrowed disc space at the level of the slip: a fairly stable situation	78
36	The sagittal (T1) MRI shows a wide disc space (L4-L5) at the slip level: a relatively unstable situation.	79
37	The method of subarticular decompression	83
38	A degenerative spondylolisthesis with the 360-degree fusion: interbody and posterolateral	90
39	An axial T1 MRI showing congenital stenosis with degenerative changes	90
40	Radiological assessment of amount of flexion angulation	101
41	Preoperative lateral extension radiograph demonstrates 5mm of subluxation of L4 on L5	104
42	Diagrams demonstrating the pedicle screw trajectory and entry sites on the vertebra	110
43	Entry points to the lumbar pedicles based on intact posterior anatomy	111
44	External landmarks for identification of the first sacral pedicles.	112
45	Posterior view demonstrating the exposure of both sides of the spine to the tips of the transverse processes	113
46	Radiologic measurements	118
47	Comparison of patient groups as regard sex	130
48	Mean age among the two groups	131
49	Age distribution among the two groups	132
50	Occupation & smokers among the two groups	133
51	Mean height, weight, BMI among the two groups	134
52	Distribution of obesity among the two groups	135
53	Clinical presentation among the two groups	137
54	Back signs among the two groups	138

55	Pre operative (JOA score)	140
56	Level of spondylolisthesis in both groups	141
57	Parameters of sagittal alignment among both groups	142
58	The presence of instability and lateral stenosis in the two groups	143
59	The compressing element found intraoperative in the two groups	144
60	Post operative radiological change in sagittal alignment among the two groups	146
61	Preoperative & postoperative slip angle in the two groups	147
62	Preoperative & postoperative slip % in the two groups	148
63	Preoperative & postoperative disc height in the two groups	148
64	Preoperative & postoperative lordosis angles in the two groups	149
65	Analysis of JOA score pre & post operative of the two groups	151
66	Rate of improvement of the two groups	152
67	Comparison between the pre operative & post operative JOA score of the two groups	154
68	Comparison between the pre operative & post operative JOA score of the two groups	155
69	Mean change in JOA score among the two groups	156
70	Comparison of postoperative Status among the two groups	157
71	Comparison of improvement rate among both groups	158
72	Fusion rate in group A	159
73	Comparison of complication rate among both groups	160
74	Comparison of mean hospital stay among both groups	161
75	Case no 32, Preoperative dynamic X-rays	163
76	Case no 32, Preoperative MRI	163
77	Case no 32, Post operative X-ray A-P & Lateral view	164
78	Case no 13, Preoperative dynamic X-rays	166
79	Case no 13, Preoperative MRI	166
80	Case no 13, Post operative X-ray A-P & Lateral view	167

LIST OF TABLES

No.	Title	Page	
1	Forward displacement	57	
2	Summary of the JOA system for low-back pain	116	
3	Master Table A	123	
4	Master Table B	125	
5	Master Table C	127	
6	Master Table D	129	
7	Comparison of patient groups as regard age	130	
8	Comparison of patient groups as regard mean age and duration of symptoms	131	
9	Age distribution among the two groups	132	
10	Occupation & smokers among the two groups	133	
11	Obesity among the two groups	134	
12	Distribution of obesity among the two groups	135	
13	Clinical presentation among the two groups	136	
14	Preoperative JOA score of both groups	139	
15	Level of spondylolisthesis in both groups	141	
16	Parameters of sagittal alignment among both groups	142	
17	The presence of instability and lateral stenosis in the two groups	143	
18	Indication of surgery in the two groups	144	
19	The compressing element found intraoperative in the two groups	144	
20	Post operative radiological change in sagittal alignment among the two groups	145	

21	Post operative radiological change in sagittal alignment	146
22	Analysis of JOA score pre & post operative of the two groups	150
23	Comparison between the pre operative & post operative JOA score of the two groups	152
24	Mean change in JOA score among the two groups	155
25	Comparison of Postoperative Status among the two groups	156
26	Comparison of improvement rate among both groups	157
27	Fusion rate in Group A	159
28	Comparison of complication rate and hospital stay among both groups	160

LIST OF ABBREVIATIONS

% slip	Degree of the slip
ALIF	Anterior lumbar interbody fusion
ALL	Anterior longitudinal ligament
AP	Anteroposterior
BMI	Body mass index
BMP	Bone morphogenic protein
СТ	Computerized tomography
EZ	Elastic zone
FSU	Functional spinal unit
h	Disc height
H	Posterior wall height of the proximal vertebral body
h/H	Disc height%
Ht	Body height
JOA	Japanese orthopedic association
LL	Lumbar lordosis
MRI	Magnetic resonance image
Mo	Months
n	Number
No	Number
NS	Non Significant
NZ	Neutral zone
P	Probability Value
PLIF	Posterior lumbar interbody fusion
PLL	Posterior longitudinal ligament
PZ	Plastic zone
RCT	Randomized control study
rhBMP-2	Recombinant human bone morphogenetic protein-2
S	Slippage
SA	Slip angle
SCS	Spinal canal stenosis
TENS	Transcutaneous electrical nerve stimulation
TLIF	Transforaminal lumbar interbody fusion
Wt	Body weight
yr	Years

INTRODUCTION

Spondylolisthesis refers to the forward displacement of one vertebra relative to another. Five types of listhesis have been described according to the Wiltse-Newman-MacNab classification system and include the isthmic, degenerative, dysplastic, traumatic, and pathologic forms. (*Guiot & Mendel*, 2005)

Degenerative spondylolisthesis was first described by Junghans in 1931 as a specific form of listhesis with an intact neural arch. (*Bennett, 2004*)

Degenerative spondylolisthesis typically occurs at the level of L4-L5. It is then most likely at L3-L4, followed by L5-S1. Older people are most commonly affected; the average age at presentation being 60 years. It is four times more likely to occur in women than men, Parity has been associated with an increase incidence of spondylolisthesis. (*Guiot & Mendel*, 2005)

Clinically patients frequently complain of intermittent low back pain, symptoms of neurogenic claudication, occasionally radicular pain from compression by the degenerative facet. (*Guiot & Mendel, 2005*)

1

Imaging includes plain X-ray standing lateral, anteroposterior, oblique & flexion/extension views of the lumbar spine are helpful in demonstrating a slip, CT or MRI of lumbarer spine. (*Bennett*, 2004)

Treatment includes nonoperative care and operative intervention indicated for patients with progressive neurological deficit and those who fail to improve on proper nonoperative treatment, specifically, those people with persistent pain, either radicular or claudicatory, that interferes with professional and personal activity as well as quality of life. (*Schnake et al, 2006*)

Aim of work

- Review of literature and recent publication on degenerative spondylolisthesis and its management.
- Comparing different modalities for surgical management of degenerative spondylolisthesis as regard indications and outcome.
- Finding out optimal surgical management for degenerative spondylolisthesis.

Functional Musculoskeletal Anatomy

There are five lumbar vertebrae and the sacrum making up the lumbar spine. We can consider each vertebra as having three functional components: the vertebral bodies, designed to bear weight; the neural arches, designed to protect the neural elements; and the bony processes (spinous and transverse), designed as outriggers to increase the efficiency of muscle action. (*Wong & Transfeldt, 2007 A*)

The vertebral bodies are connected together by the intervertebral discs, and the neural arches are joined by the facet (zygapophyseal) joints (Fig. 1). The discal surface of an adult vertebral body demonstrates on its periphery a ring of cortical bone. This ring, the epiphysial ring, acts as a growth zone in the young and in the adult as an anchoring ring for the attachment of the fibers of the annulus. The hyaline cartilage plate lies within the confines of this ring (Fig. 2). The size of the vertebral body increases from L1 to L5, which is indicative of the increasing loads that each lower lumbar vertebral level has to absorb. (*Wong & Transfeldt, 2007 A*)

The neural arch is composed of two pedicles and two laminae (Fig. 1). The pedicles are anchored to the cephalad half of the vertebral body and form a protective cover for the cauda equina contents of the lumbar spinal canal. The ligamentum flavum (yellow ligament) fills in the interlaminar space at each level.

The outriggers for muscle attachment are the transverse processes and spinous process. (*Wong & Transfeldt, 2007 A*)

The Intervertebral Disc

The intervertebral discs (Fig. 3) are complicated structures, both anatomically and physiologically. Anatomically, they are constructed in a manner similar to that of a car tire, with a fibrous outer casing, the annulus, containing a gelatinous inner tube, the nucleus pulposus. The fibers of the annulus can be divided into three main groups: the outermost fibers attaching between the vertebral bodies and the undersurface of the epiphysial ring; the middle fibers passing from the epiphysial ring on one vertebral body to the epiphysial ring of the vertebral body below; and the innermost fibers passing from one cartilage endplate to the other. The anterior fibers are strengthened by the powerful anterior longitudinal ligament. The posterior longitudinal ligament affords only weak reinforcement, especially at L4-5 and L5-S1, where it is a midline, narrow, unimportant structure attached to the annulus. The anterior and middle fibers of the annulus are most numerous anteriorly and laterally but are deficient posteriorly, where most of the fibers are attached to the cartilage plate (Fig. 3). (Wong & Transfeldt, 2007 A)

The fibers of the annulus are firmly attached to the vertebral bodies and arranged in lamellae, with the fibers of one layer running at an angle to those of the deeper layer (Fig. 4). This anatomic arrangement permits the annulus to limit vertebral movements. This important function is reinforced by the investing vertebral ligaments. (*Wong & Transfeldt, 2007 A*)

Figure 1: The components of a lumbar vertebra: the body, the pedicle, the superior and inferior facets, the transverse and spinous processes, and the intervertebral foramen and its relationship to the intervertebral disc and the posterior joint.

Figure 2: The epiphysial ring is wider anteriorly and surrounds the hyaline cartilaginous plate.