دراسة تكسير وإدمصاص بعض متبقيات المبيدات العضوية

رسالة مقدمة من
شريف محمد طه محمد
(ماجستير في العلوم)
2010

للحصول على
درجة دكتوراه الفلسفة في العلوم (كيمياء)
جامعة عين شمس
كلية العلوم
قسم الكيمياء
2015
دراسة تكسير وإدمصاص بعض مبديات العضويين

 رسالة مقدمة

 شريف محمد طه محمد

 ماجستير في العلوم

 للحصول على

 درجة دكتوراه الفلسفة في العلوم (كيمياء)

 2015

 إشراف:

 أ.د. محمد يوسف القاضي
 أ.د. أشرف محمود المرصفي
 د. محمد عبد الفتاح عامر

 لجنة الحكم:

 أ.د. أحمد فؤاد محمد الفراري (محكم)
 أ.د. عصام عبد العزيز إبراهيم كيشار (محكم)
 أ.د. محمد يوسف القاضي (مدير، محكم)
 أ.د. أشرف محمود المرصفي (مدير، محكم)

 أ.د. متفجر الكيمياء العضويين كلية العلوم جامعة الزقاق

 الكيمياء العضويين بنات عين شمس

 الكيمياء العضويين علوم عين شمس

 رئيس بحوث المركز لمبديات العضويات

 الموافقة مجلس الكلية

 الموافقة مجلس الجامعة
Study on the degradation and adsorption of some organic pesticides residues

Thesis presented by
Sherif Mohamed Taha Mohamed (M.Sc.)

Submitted in Fulfillment
of the Requirements for the Degree of Doctor of Philosophy in chemistry (Ph.D)
In Chemistry

2015
Study on the degradation and adsorption of some organic pesticides residues

Thesis presented by

Sherif Mohamed Taha Mohamed (M.Sc.)

Submitted in Fulfillment of the Requirements for the Degree of Doctor of Philosophy in chemistry (Ph.D)

In Chemistry

2015

Supervised by:

Prof. Dr. Mohamed Y. El – Kady
Professor of organic chemistry,
Faculty of science, Ain shams university.

Dr. Ashraf M. El-Marsafy
Central Lab of Residue Analysis of Pesticides and Heavy Metals in Food

Dr. Mohamed Abd- Elftah Amer
Central Lab of Residue Analysis of Pesticides and Heavy Metals in Food

Approved

Prof. Dr. H. Derbala
Head of chemistry
Department
كلية العلوم
قسم الكيمياء

اسم الطالب : شريف محمد طه محمد
الدرجة العلمية : دكتوراه الفلسفة في العلوم
القسم التابع له : الكيمياء
اسم الكلية : العلوم
الجامعة : عين شمس
سنة المنح : 2015
I would like to express my sincere appreciation to my Ph.D. committee; Prof. M. Y. Elkady, Prof. Ashraf Elmarsafy and Dr. Mohamed Amer for willingly accepting as well as for their constructive criticism and advice.

Especial thanks for my mother, sisters, my wife, and to my friend Ekramy Halawa for their support and motivation to excel in my doctoral studies, research and my future professional career.

I would like also to express my sincere appreciation to Prof. Jean-Marc Chovelon (IRCELYON, Lyon University) for willingly accepting to participate in the part of boscalid degradation study.
To my Mother
Table of Contents

LIST OF TABLES... III
LIST OF FIGURES.. IV
LIST OF SCHEMES.. XI
LIST OF SYMBOLS AND ABBREVIATIONS......................... XII

1. **Introduction**...1
 1.1 Pesticides definition..2
 1.2 Pesticides classification by use (target and function)........3
 1.3 Pesticides classification by its chemical composition and mode of action...4
 1.4 Health impact of pesticides..13
 1.5 Pesticides maximum residue limits..............................15
 1.6 Maximum residue limits Pesticides in water.................16
 1.7 Physical and chemical properties of pesticides..............19
 1.8 Water contaminated by pesticides...............................23
 1.9 Treatment of pesticides contaminated water...............28
 1.10 Pesticides degradation by advanced chemical oxidation processes (AOP)..35
 1.11 Ozone...39
 1.12 Fenton oxidation...40
 1.13 Persulfate..43
 1.14 Photo-catalyst...45
 1.15 Objective of this work..55
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. PUBLICATIONS</td>
<td>56</td>
</tr>
<tr>
<td>3. EXPERIMENTS</td>
<td>57</td>
</tr>
<tr>
<td>3.1 Chemicals and materials</td>
<td>57</td>
</tr>
<tr>
<td>3.2 Pesticides standard preparation</td>
<td>61</td>
</tr>
<tr>
<td>3.3 Adsorbent production</td>
<td>61</td>
</tr>
<tr>
<td>3.4 Preparation of chemically treated adsorbents</td>
<td>62</td>
</tr>
<tr>
<td>3.5 Adsorbent characterization</td>
<td>63</td>
</tr>
<tr>
<td>3.6 Catalyst production</td>
<td>64</td>
</tr>
<tr>
<td>3.7 Characterization of prepared catalysts</td>
<td>65</td>
</tr>
<tr>
<td>4. METHODS</td>
<td>67</td>
</tr>
<tr>
<td>4.1 Pesticides mixture sorption test</td>
<td>67</td>
</tr>
<tr>
<td>4.2 Pesticides sorption at different factors</td>
<td>68</td>
</tr>
<tr>
<td>4.3 Degradation tests</td>
<td>71</td>
</tr>
<tr>
<td>4.4 HPLC- Ms/Ms analysis</td>
<td>75</td>
</tr>
<tr>
<td>5. RESULTS AND DISCUSSION</td>
<td>81</td>
</tr>
<tr>
<td>5.1 Adsorbent characterization</td>
<td>77</td>
</tr>
<tr>
<td>5.2 Catalyst characterization</td>
<td>88</td>
</tr>
<tr>
<td>6. SUMMARY and CONCLUSION</td>
<td>141</td>
</tr>
<tr>
<td>7. REFERENCES</td>
<td>147</td>
</tr>
</tbody>
</table>
LIST OF TABLES

1. Classification of pesticides based on the target organisms……..4
2. Common names and chemical structures of the studied pesticides……………………………………………………………………61
3. Physico-chemical properties of the tested pesticides and its Regulatory limits in water from different authorities………………..59
4. Names of the included test samples in this study…………………..72
5. Physico-chemical properties of the studied adsorbents………..78
6. The main surface characteristics of the studied sorbents………..79
7. Percentage and particle sizes of rutile and anatase phases for prepared catalysts…………………………………………….…….88
8. Main surface characteristics of the prepared catalysts………..95
LIST OF FIGURES

1. Amounts of pesticide use by different income countries........1
2. Drainage outlets and reuse pumping stations in the delta2
3. stacked graphene sheets and randomly aromatic structures of biochar...31
4. chlorophyl photosynthesis and TiO$_2$ Photocatalysis........46
5. Heterogeneous photocatalytic oxidation of organic pollutants (R)...47
6. N$_2$ adsorption isotherms of the untreated adsorbents........80
7. N2 adsorption isotherms of the treated adsorbents.........81
8. The differential Pore size distribution curves of the untreated adsorbents (a) BRc, (b) BCn and (c) CHc.......................82
9. The differential Pore size distribution curves of the treated adsorbents (a) TBRc, (b) TBCn and (c) TCHc.82
10. FTIR spectra of the untreated adsorbents..........................84
11. FTIR spectra of the treated adsorbents............................84
12. SEM images of the untreated adsorbents (a) BRc, (b) BCn and (c) CHc...86
13. SEM images of the treated adsorbents (a) TBRc, (b) TBCn and (c) TCHc...87
14. XRD for undoped titanium dioxide..................................89
15. XRD patterns for nitrogen doped titanium dioxide............90
16. SEM images of the undoped TiO$_2$ (A) and N doped TiO$_2$ (B) at 500μm. ...92
17. SEM images of the undoped TiO$_2$ (A) and N doped TiO$_2$ (B) at 1μm. ...93
18. The differential Pore size distribution curves of undoped and N doped TiO$_2$ (UT and NT). ..94
19. N$_2$ adsorption isotherms of undoped and N doped TiO$_2$ (UT and NT). ...95
20. Kd (solid–water distribution coefficients) of the pesticides mixture on the tested adsorbents BRc, BCn, CHc, TBRc, TBCn and TCHc...96
21. Kd (solid–water distribution coefficients) of the pesticides mixture on TBRc at different time intervals.......................97
22. Kd (solid–water distribution coefficients) of the pesticides mixture on BRc at different time intervals.......................97
23. Kd (solid–water distribution coefficients) of Imidacloprid and triadimenol during its individual and in pesticides mixture on BRc at different time intervals (10 m and 2 h)100
24. Kd (solid–water distribution coefficients) of the pesticides mixture on BRc at different pH...101
25. A% (adsorption percentages) of the pesticides mixture on BRc at different water/BRc ratio.................................102
26. Kd (solid–water distribution coefficients) of the pesticides mixture on BRc at different individual pesticide concentrations...103
27. Degradation of boscalid (Bd, 5mg/L) using N-doped (BdNT and BdNT1) and undoped TiO2 (BdUT and BdUT1) in water containing MeOH ([Bd/ MeOH] = 100) at different reaction times. ...105
28. Degradation of boscalid (Bd, 5mg/L) using persulfate (BdPS) and using persulfate with N-doped TiO2 (BdPSNT) and undoped TiO2 (BdPSUT) in water containing MeOH ([Bd/ MeOH] =100) at different reaction times106
29. Degradation of boscalid (Bd, 5mg/L) using persulfate (BdPS) in water containing MeOH ([Bd/ MeOH] = 100) under heating at 80 °C at different reaction times106
30. Degradation of boscalid (Bd, 3mg/L) using N-doped TiO2 (BdNT), undoped TiO2 (BdUT), Persulfate with doped TiO2 (BdPSNT) and Persulfate with undoped TiO2 (BdPSUT) in 100 % water solution under sun light radiation at different reaction times. ...107
31. Degradation of boscalid (Bd, 3mg/L) using Persulfate (BdPS) in 100 % water solution under sun light radiation at different reaction times. ...108
32. Degradation of boscalid (Bd, 3 mg/L) using Persulfate in solution of 100 ml DIW (BdPS), 99.7 ml DIW with [MeOH/Bd]
= 100 (BdPS_MeOH), 99.4 ml DIW with [MeOH/Bd] = 200 (BdPS_2MeOH) all under heating at 50 °C at different reaction times..109
33. Total Ion Chromatogram (TIC) for the negative scan analysis of DIW. ...111
34. TIC for the negative scan analysis of boscalid (2 mg/L, 100 % DIW) with its mass spectrum ..112
35. TIC for the negative scan analysis of persulfate (PS) standard with its mass spectrum ..113
36. TIC for the negative scan analysis of Boscalid (5 mg/L) by using persulfate (BdPS) in water containing MeOH ([Bd/MeOH] = 100) after 1 h sunlight irradiation115
37. TIC for the negative scan analysis of Boscalid (5 mg/L) by using persulfate (BdPS) in water containing MeOH ([Bd/MeOH] = 100) after 3 h sunlight irradiation116
38. TIC for the negative scan analysis of Boscalid (5 mg/L) by using persulfate with N-doped TiO₂ (BdPSNT) in water containing MeOH ([Bd/MeOH] = 100) after 1 h sunlight irradiation, with the mass spectrum of the eluted peak at 18.33 m...117
39. TIC for the negative scan analysis of Boscalid (5 mg/L) by using persulfate with N-doped TiO₂ (BdPSNT) in water containing MeOH ([Bd/MeOH] = 100) after 3 h sunlight
irradiation, with the mass spectrum of the eluted peak at 19.25 m ...118
40. TIC for the negative scan analysis of Boscalid (5 mg/L) by using persulfate in water containing MeOH ([Bd/ MeOH] = 100) after 15 m heating at 80 °C, with the mass spectrum of the eluted peak at 19.21 m ... 119
41. TIC for the negative scan analysis of Boscalid (5 mg/L) by using persulfate in water containing MeOH ([Bd/ MeOH] = 100) after 30 m heating at 80 °C, with the mass spectrum of the eluted peak at 17.62 m ...120
42. TIC for the negative scan analysis of Boscalid (5 mg/L) by using persulfate in water containing MeOH ([Bd/ MeOH] = 100) after 1 h heating at 80 °C, with the mass spectrum of the eluted peak at 18.30 m ...121
43. TIC for the negative scan analysis of Boscalid (5 mg/L) by using persulfate in water containing MeOH ([Bd/ MeOH] = 100) after 3 h heating at 80 °C, with the mass spectrum of the eluted peak at 18.15 m ...122
44. TIC for the negative scan analysis of Boscalid (3 mg/L) by using N-doped TiO₂ (BdNT) in 100 ml DIW after 1 h sunlight irradiation, with the mass spectrum of the eluted peak at 19.75 m ...124
45. TIC for the negative scan analysis of Boscalid (3 mg/L) by using undoped TiO₂ (BdUT) in 100 ml DIW after 1 h sunlight