

Ain Shams University
Department of Architecture

Towards Application of Green Architecture Principles in Egypt

Presented by

Sara Samy Mahmoud B.sc., Architecture Faculty of Engineering, Ain Shams University, 2008

A Thesis

Submitted as a part of requirements to obtain the degree of Master of Science in Architectural Engineering

Supervisor Committee

Prof. Dr. Morad Abdelkader

Professor of Architecture & Environmental Control, Faculty of Engineering, Ain Shams University

Dr. Abeer Mohamed Mostafa

Assistant Professor of Architecture & Environmental Control, Faculty of Engineering, Ain Shams University

Towards Application of Green Architecture Principles in Egypt

Presented by

Sara Samy Mahmoud B.sc., Architecture Faculty of Engineering, Ain Shams University, 2008

A Thesis

Submitted as a part of requirements to obtain the degree of Master of Science in Architectural Engineering

Examiners Committee

Prof. Dr. Morad Abdelkader

Professor of Architecture & Environmental Control, Faculty of Engineering, Ain Shams University

Prof. Dr. Mohamed Moemen Affify

Professor of Architecture and Environmental Design, Faculty of Engineering, Cairo University

Prof. Dr. Hanan Mostafa Sabry

Professor of Environmental Design and Control, Department of Architecture, Faculty of Engineering, Ain Shams University

Supervisor Committee

Prof. Dr. Morad Abdelkader

Professor of Architecture & Environmental Control, Faculty of Engineering, Ain Shams University

Dr. Abeer Mohamed Mostafa

Lecturer of Architecture & Environmental Control, Faculty of Engineering, Ain Shams University

2014

Signature

Statement

This thesis is submitted to Ain Shams University for the degree of Masters of Science in Architecture.

The work included in this thesis was accomplished by the author at the department of architecture, faculty of Engineering, Ain Shams University, during the period from 2009 to 2014.

No part of this thesis has been submitted for a degree or a qualification at any other university or institute.

Date:

Signature:

Name: Sara Samy Mahmoud

B.Sc. of Architecture- Ain Shams University- 2008

Table of Contents

TABLE OF CONTENTS	II
LIST OF FIGURES	IV
LIST OF TABLES	v
ABSTRACT	VI
KEY WORDS	VI
ACKNOWLEDGEMENT	VII
INTRODUCTION	VIII
RESEARCH PROBLEM	IX
RESEARCH OBJECTIVES	IX
RESEARCH SCOPE	x
RESEARCH METHODOLOGY	x
RESEARCH STRUCTURE	XI
CHAPTER ONE: GREEN ARCHITECTURE BASIC DEFINITIONS AND RATING SYSTEM 1.1 INTRODUCTION	1 1 3 6 9 10 13 14 15
CHAPTER TWO: EXPERIENCES OF GREEN ARCHITECTURE PRACTICES 2.1 INTRODUCTION	24
2.2 SELECTED EXPERIENCES OF GREEN ARCHITECTURE PRACTICES 2.2.1 Criteria of selecting green architecture experiences	24 <i>24</i> leading 25 o the
2.3 COMPARATIVE STUDY OF THE CONTEXTS OF GREEN ARCHITECTURE PRACTICES IN THE	UNITED
STATES OF AMERICA, INDIA, AND EGYPT	

	2.3.1.1	Stakeholders of Green Architecture Practices in the United States of	
	America 2.3.1.2	29 Stakeholders of Green Architecture Practices in India	21
	2.3.1.2	Stakeholders of Green Architecture Practices in India	
	2.3.1.4	Concluding Remarks	
222	Eneray Effi	ciency Codes	
2.5.2	2.3.2.1	Energy Efficiency Codes in the United States of America	
	2.3.2.2	Energy Efficiency Codes in India	
	2.3.2.3	Energy Efficiency Codes in Egypt	
	2.3.2.4	Concluding Remarks	
2.3.3	Supportive	Bases of Green Architecture Practices	. 42
	2.3.3.1	Supportive Bases of Green Architecture Practices in the United States	of
	America	42	
	2.3.3.2	Supportive Bases of Green Architecture Practices in India	43
	2.3.3.3	Supportive Bases of Green Architecture Practices in Egypt	
	2.3.3.4	Concluding Remarks	
2.3.4	Incentives	of Green Architecture Practices	
	2.3.4.1	Incentives of Green Architecture Practices in the United States of Ame 47	rica
	2.3.4.2	Incentives of Green Architecture Practices in India	
	2.3.4.3	Incentives of Green Architecture Practices in Egypt	50
	2.3.4.4	Concluding Remarks	
2.3.5	Green Arch	nitecture Leading Projects	. 51
	2.3.5.1	Green Architecture Leading Projects in United States	51
	2.3.5.2	Green Architecture Leading Projects in India	54
	2.3.5.3	Green Architecture Leading Projects in Egypt	57
	2.3.5.4	Concluding Remarks	
2.3.6	Green Build	ding Rating Systems in United States, India and Egypt	. 62
	2.3.6.1	Comparing the three rating systems	
	2.3.6.2	Concluding Remarks	
2.4 Pos	TLUDE		. 67
		VALUATION OF LOCAL ENVIRONMENTALLY ORIENTED PROJECTS	S IN
TERMS	OF GREEN A	ARCHITECTURE PRINCIPLES	
3.1 INTR	ODUCTION		. 70
3.2 CRIT	TERIA OF SELEC	CTING CASE STUDIES	. 70
3.3 ME	THODOLOGY O	F CASE STUDIES ANALYSIS	. 70
3.4 EVA	LUATING THE	Selected Case Studies in terms of Green Architecture Principles	. 71
3.4.1	Case Study	1: Info Fort Warehouse (LEED Silver Certified Project)	. 71
	3.4.1.1	Project Profile	71
	3.4.1.2	Applying GPRS on the Project	73
	3.4.1.3	Project's Evaluation	
3.4.2	Case Study	2: L'Oreal Pyramids Cosmetics Factory (LEED Certified Project)	
	=	Project Profile	78

	3.4.2.2	Applying GPRS on the Project	80
	3.4.2.3	Project's Evaluation	86
3.4.3	Case Study	3: Credit Agricole Egypt New Head Office (LEED Registered	Project)
	87		
	3.4.3.1	Project Profile	87
	3.4.3.2	Applying GPRS on the Project	89
	3.4.3.3	Project's Evaluation	94
3.4.4	Case Study	4: Outsourcing Service Building - MB4 (LEED Registered Proje	ct). 95
	3.4.4.1	Project Profile	95
	3.4.4.2	Applying GPRS on the Project	96
	3.4.4.3	Project's Evaluation	101
3.4.5	Case Study	5: Florenta Residential Compound (GPRS Registered Project)	102
	3.4.5.1	Project Profile	
	3.4.5.2	Application of GPRS on the Project	
	3.4.5.3	Project's Evaluation	
3.5 Pos	TLUDE:		109
CONCLU	JSIONS		115
т• ,	c D'		
List o	of Figure	S	
		gy Consumption by Fuel Type	
		rgy-related CO ₂ emissions by fuel type	
		ergy Consumption by Resources in 2010al Primary Energy Consumption 1980-2010	
		isumption by Purpose, Egypt, 2011/2012	
		Green Building Rating Systems	
		egistered and Certified Projects as of Sep. 2014	
		untries of LEED registered or certified projects till Sep. 2013	
		tered and Certified Projects in India as of Sep. 2014	
		f Green Architecture Application	
		of mandatory requirements in ASHRAE 189.1 and LEED	
		of mandatory requirements in IGCC and LEED	
Figure 2	-7: Snapshot	of the Indian Green Building Council's Website: Directory of	Building
		Providers	
		Energy Efficiency Labels	
Figure 2-	9: Study of Da	aylight and Passive Heat Gain Strategies	53
		e showing green strategies applied in the center	
Figure 2-	11: Section Sh	nowing Air Movement through Clerestory windows	54
		w of the CII	
-		Sketch of the Wind Towers	
		lens to reduce heat island effect	
		c View of Aramex Mashreq Warehouse	
-		lashreq Warehouse Layout	
-		ghting through skylightsparation on site	
i igul C Z-	TO. MAGSIE SEL	JUI ULI ULI JILE	

Figure 3-1: Info Fort Project Perspective	71
Figure 3-2: Warehouse interior showing the use of skylights	72
Figure 3-3: L'Oreal Pyramids Perspective	78
Figure 3-4: Applied strategies in the sustainable sites category	79
Figure 3-5: Exterior perspective showing window to wall ratio, shading and white painted wa	lls .87
Figure 3-6: Exterior perspective showing shading of South façade	88
Figure 3-7: Exterior perspective showing using native plants in landscape	88
Figure 3-8: Interior perspective showing natural daylit	
Figure 3-9: Exterior perspective showing South facade	95
Figure 3-10: Project Location	
Figure 3-11: Interior perspective showing used materials	
Figure 3-12: Master Plan	102
Figure 3-13: Separate waste containers	102
Figure 3-14: Exterior perspective showing window to wall ration and exterior painted walls	103
Figure 3-15: Photovoltaic Cells on Building Roofs	103
List of Tables	
Table 1-1: USGBC's Green Building Principles	11
Table 1-2: Worldwide Green Building Rating Systems	
Table 2-1: Comparison between LEED, LEED-India and GPRS	63
Table2-2: Comparison between LEED-India, LEED and GPRS' categories and credits	
Table 3-1: Interview results for the five case studies	110
Table 3-2: Evaluation Categories of GPRS Credits	
Table 3-3: Fulfillment of GPRS credits in the four case studies	111
Table 4-1: Potentials of fulfilling fully, frequently and possibly obtained credits of GPRS	117
Table 4-2: Obstacles of fulfillment of hardly, slightly and rarely obtained credits of GPRS	121

Abstract

Green architecture practices in Egypt are very limited and their progress does not go with constant steps as required for mitigating local environmental problems.

The Research reviews the Egyptian context of green architecture practices to determine potentials and obstacles of applying green architecture principles in Egypt, hence suggesting recommendations that can pave a better way to increase the potentials on account of obstacles towards applying these principles in Egypt in the near future.

The research exclusively studies the obstacles of applying green architecture principle locally in Egypt, via examining the practices context.

The evaluation of Egypt's status in applying green architecture practices is achieved via reviewing the contextual factors of green architecture practices in the United States of America, India and Egypt.

A comparative study between the three countries is held to address the potentials and obstacles of the context of green architecture practices in Egypt. Finally local environmentally oriented projects are reviewed in terms of green architecture principles (using Green Pyramid Rating System (GPRS)) to determine potentials and obstacles of applying these principles in the Egyptian context. Additional data about the selected environmentally oriented projects is obtained through an open-ended interview with the designers of those projects.

Key Words

Green architecture, LEED, LEED-India, GPRS and green building practices.

Acknowledgement

First of all I thank God for enabling me to accomplish my goals.

Secondly, this work would not have been possible without the support of my supervisors, Prof. Dr. Morad Abdelkader and Dr. Abeer M. Mostafa who taught me and helped me with their advice and inspirational ideas. I am also deeply grateful to Prof. Dr. Hanan Mostafa Sabry and Dr. M. Moemen Affify.

I wish to thank my interviewees E. Tarek Kamel, E. Abdulrahman Sherazy, E. Diaa Madkor and E. Racha Rachwan for imparting the required information for this thesis. I also wish to thank Dr. Manal Elbatran who supported me with useful information for the thesis.

I owe my sincere gratitude to my family specially my husband E. Ahmad Hamdy and my daughter Mariam for supporting me and providing a favorable environment to accomplish my goals.

Introduction

After the industrial revolution most of the world countries turned to use non-renewable resources of energy until the start of energy crisis in 1970's caused mainly by the peaking of oil production in major industrial nations and 1973 oil crisis caused by an OPEC oil export embargo by many of the major Arab oil-producing states, in response to Western support of Israel.

In 1980's world turned to take a responsible approach towards nature through mitigating the effects of the human activities on the environment, reducing the non-renewable energy consumption and minimizing energy and water requirements without decreasing either comfort level or living standard. This new approach has appeared due to realization of energy depletion, increasing of pollution and global warming. These factors accelerated the steps towards environment conservation in most of countries of the world and urged the need for reconsidering the effects of the human activities on the environment.

Building sector is one of the most cost-effective sectors for reducing energy consumption, as buildings account for 40% of primary energy consumption of the world, and are also a significant source of carbon dioxide emissions. This led to the recognition that reducing overall energy demand, improving energy efficiency in buildings can significantly reduce Carbon Dioxide (CO₂) and other relevant emissions from the building sector.¹

Realizing these facts helped in the emergence of a new green approach that represents a model shift in the way we understand, design and construction today. Green buildings aim to fundamentally change the built environment by creating energy efficient, healthy and productive buildings that mitigate the significant impacts of buildings on the local, regional and global environment.

Green building represents a model shift in the way we understand, design and construction today. This shift is sweeping across world's countries.

¹ International Energy Agency (EIA), 2014, accessed 12-04-2014,

https://www.iea.org/topics/sustainablebuildings/

It's a revolution inspired by an awakened understanding of how buildings use resources, affect people, and harm the environment.

On the local level, Egyptian architecture contains good examples of environmentally responsible buildings. Ancient Egyptian temples, tombs and residences represent the first energy efficient (EE) buildings in the world based on the current knowledge of bioclimatic, green, desert, passive and ecological building principles.

Islamic architecture also took into consideration the environmental issues and used architectural elements that promoted passive design of buildings such as wind catchers, inner courts, domes, and mashrabeyya.

Nubian architecture has depended on mud as main construction material because of its appropriateness for Nubian culture and low cost.

Vernacular architecture of Hassan Fathy is considered pioneering experiences of ecological architecture that promotes environmental architecture principles in addition to the human and local culture dimensions in desert or arid areas.

In addition to some examples of contemporary architecture which aimed to reach environmental aspects and to reduce effects on the environment.

Research Problem

Green architecture practices in Egypt are still at an experimental phase and the projects developed so far can be defined as environmental architecture rather than green architecture. These practices do not go with constant steps and did not appear as expected to mitigate the local environmental problems.

The research addresses the difficulties and obstacles that prevent the application of green architecture principles in Egypt.

Research Objectives

This research aims to determine potentials and obstacles of applying green architecture principles in Egypt, hence suggesting recommendations that can pave a better way to increase the potentials on account of obstacles towards applying green architecture principles in Egypt in the near future.

¹ J. Yudelson, Green Building Revolution, International and Pan Americans Copyright Conventions, 2008, P. xv, 2

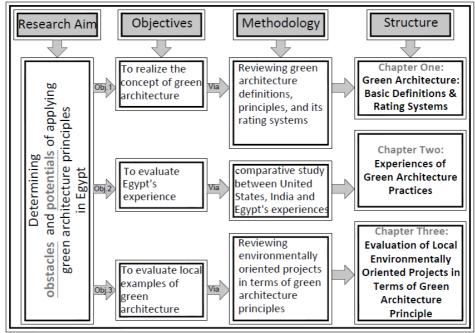


Figure 0-1: Research Objectives

Research Scope

The research exclusively studies the obstacles of applying green architecture principle locally in Egypt, via examining the practices context.

Research Methodology

The research addresses evaluation of Egypt's status in applying green architecture practices via:

- Analyzing the contextual factors of green architecture practices in the United States of America, India and Egypt through a comparative study between the three countries to address the potentials and obstacles of the context of green architecture practices in Egypt.
- Reviewing some selected local environmentally oriented projects in terms of green architecture principles (using GPRS) to determine potentials and obstacles of applying these principles in the Egyptian context.

 Additional data about the selected environmentally oriented projects is obtained through an open-ended interview with key persons in the design team of these projects.

Research Structure

The research is organized in three chapters, as follows:

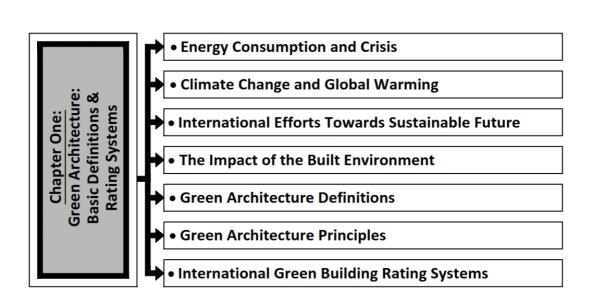
Chapter One: Green Architecture Basic Definitions and Rating Systems

Chapter one introduces global environmental problems, including the depletion of non-renewable energy resources and relevant increases in GHGs' emissions that resulted in the climate change and the global warming phenomena.

It also discusses the significant role that buildings can play in mitigating environmental problems through adopting green architecture principles. This is also manifested through presenting the international rating systems of green buildings which have been developed to apply differently in different climates, geographical conditions, construction practices and regulations.

Chapter Two: Experiences of Green Building Practices and Rating Systems

Chapter Two presents an analysis of selected experiences of two countries that have successful green building practices to determine the challenges and potentials of applying these practices and how each country helped in implementing and mainstreaming of its rating system.


This analysis will be in the form of a comparative study between the selected experiences and the Egyptian experience.

Chapter Three: Evaluation of Local Environmentally Oriented Projects in Terms of Green Architecture Principles

This chapter reviews number of environmentally oriented projects in Egypt in terms of green architecture principle using GPRS; thus defining the main challenges of expanding the scope of creating green buildings in Egypt, and the incentives and potentials of scaling up the implementation of it in the Egyptian context.

Conclusions and Recommendations

Chapter One: Green Architecture Basic Definitions and **Rating Systems**

