

EVALUATION OF RESPONSE MODIFICATION FACTOR FOR REINFORCED CONCRETE STRUCTURES WITH DUAL LATERAL LOADS RESISTING SYSTEM USING APPLIED ELEMENT METHOD

By

Ahmed Mohammed El-Hussein Mohammed

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN STRUCTURAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

EVALUATION OF RESPONSE MODIFICATION FACTOR FOR REINFORCED CONCRETE STRUCTURES WITH DUAL LATERAL LOADS RESISTING SYSTEM USING APPLIED ELEMENT METHOD

By

Ahmed Mohammed El-Hussein Mohammed

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE**

IN STRUCTURAL ENGINEERING

Under the Supervision of

Prof. Dr. Hamed M. Salem

.....

Professor of Concrete Structures Structural Engineering Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

EVALUATION OF RESPONSE MODIFICATION FACTOR FOR REINFORCED CONCRETE STRUCTURES WITH DUAL LATERAL LOADS RESISTING SYSTEM USING APPLIED ELEMENT METHOD

By

Ahmed Mohammed El-Hussein Mohammed

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN STRUCTURAL ENGINEERING

Approved by the examining committee:

Prof. Dr. Hamed M. SalemThesis AdvisorProfessor of concrete structures, Structural Engineering DepartmentFaculty of Engineering, Cairo University

Prof. Dr. Hany A. AbdallahInternal ExaminerProfessor of concrete structures, Structural Engineering DepartmentFaculty of Engineering, Cairo University

Prof. Dr. Hatem H. Gheith Professor of concrete structures, Housing and Building National Research Center

External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 Engineer's Name: Ahmed Mohammed El-Hussein Mohammed Date of Birth: 8/7/1992 Nationality: Egyptian E-mail: eng.elhusseini@eng.cu.edu.eg Phone: 002-0106-2402017 Address: 11A Zaki Osman St. - Dokki - Giza - Egypt Registration Date: 01/10/2014 Awarding Date: 2017 Degree: Master of Science Department: Structural Engineering

Supervisors: Prof. Dr. Hamed M. Salem

Examiners: Prof. Dr. Hamed M. Salem Prof. Dr. Hany A. Abdallah Prof. Dr. Hatem H. Gheith Thesis Advisor Internal Examiner External Examiner (Housing and Building National Research Center)

Title of Thesis:

Evaluation of Response Modification Factor for Reinforced Concrete Structures with Dual Lateral Loads Resisting System using Applied Element Method

Key Words:

Response modification factor, Ductility, Over-strength, Redundancy, AEM.

Summary:

Designing a structure to withstand the seismic loads without any damages (elastic state) is uneconomic, as it produces bulky-sized structural members, therefore it has been a common practice by design codes to design structures for a portion of the seismic load and allow an acceptable degree of damages without failure (inelastic state). A response modification factor (R) is used by design codes to account for inelastic behavior of structures. The value of (R) depends on the ductility, redundancy and over strength of the designed structure. The thesis objective is to estimate the response modification factor for a mid-rise (twelve-storey) reinforced concrete structure with dual lateral loads resisting system consisting of shear walls and ductile moment frames. Three-dimensional dynamic nonlinear analysis based on the Applied Element Method was carried out. A parametric study was conducted to study the effect of different parameters that could affect the response modification factor including (1) peak ground acceleration (PGA), (2) concrete compressive strength (fc'), (3) reinforcement yield strength (fy), (4) reinforcement ultimate to yield strength ratio (fu / fy), (5) floor height (h) and (6) walls and moment frames configuration. It was concluded that dynamic properties of the building are not the only factors affecting the value of (R) and therefore current values defined by different codes may be unconservative. A proposed equation is introduced to calculate the response modification factor (R) for reinforced concrete structures with dual system.

Acknowledgement

Thanks to ALLAH for helping me finish this work.

Thanks to Prof. Dr. Hamed Hadhoud for his guidance, help, motivation, and support.

Dedication

I dedicate this work to my father, mother, sisters and colleagues for their continuous help, encouragement and support.

•

TABLE OF CONTENTS

CEMP QY NGF1 GO GP V0000	Ι
DEDICATION	II
TABLE OF CONTENTS	III
LIST OF FIGURES	VI
LIST OF TABLES	XIX
LIST OF ABBREVIATIONS AND SYMBOLS	XXI
ABSTRACT	XXIII
CHAPTER 1 : INTRODUCTION	1
1.1 Thesis Objectives	2
1.2 Thesis Outline	2
CHAPTER 2 : LITERATURE REVIEW	4
2.1 Response Modification Factor (R)	4
2.2 Components of Response Modification Factor (R)	4
2.2.1 Ductility Factor (R _µ)	4
2.2.2 Redundancy Factor (R _r)	11
2.2.3 Over-Strength Factor (R _s)	15
CHAPTER 3 : METHOD OF ANALYSIS	17
3.1 Introduction	17
3.2 Brief of Different Numerical Methods of Structural Analysis	17
3.3 Applied Element Method (AEM)	18
3.4 Extreme Loading for Structures (ELS)	20
3.5 Material Models in ELS	21
3.5.1 Concrete Models	21
3.5.1.1 Compression and Tension Model	21
3.5.1.2 Shear Stresses Model	22
3.5.2 Reinforcing Steel Model	22
3.6 Validation of Extreme Loading for Structures (ELS)	23
CHAPTER 4 : CASE STUDY	31
4.1 Introduction	31
4.2 Reference Case Configuration	31
4.3 Design Codes	32
4.4 Design Material Properties	32
4.5 Design Loads	32
4.5.1 Gravity Loads	32
4.5.1.1 Dead Loads (DL)	32
4.5.1.2 Live Loads (LL)	32
4.5.2 Seismic Loads (SL)	32

4.5.2.1 Design Response Spectrum Sd (T1)	33
4.6 Design Load Combinations	34
4.7 Design Outputs of Reference Case	35
4.7.1 Slabs	35
4.7.2 Beams	35
4.7.3 Columns	37
4.7.4 Shear Walls	39
4.8 Modeling in ELS	39
4.8.1 Mesh Sensitivity Analysis	39
4.8.2 Seismic Loads in ELS	42
4.8.3 Material Properties in ELS	43
4.9 Studied Parameters	44
4.9.1 Earthquake Ground Acceleration (ag)	44
4.9.2 Concrete Compressive Strength (f'c)	45
4.9.3 Reinforcement Grades	45
4.9.4 Storey Height (h)	46
4.9.5 Wall and Moment Frames Configuration	46
CHAPTER 5 : NUMERICAL RESULTS	48
5.1 Introduction	48
5.2 Effect of Earthquake Ground Acceleration (ag)	48
$5.2.1 \ a_g = 0.15g$	49
$5.2.2 a_g = 0.30g$	57
$5.2.3 a_g = 0.45g$	64
$5.2.4 a_g = 0.60g$	71
$5.2.5 a_g = 0.80g$	78
5.3 Effect of Concrete Compressive Strength (f'c)	85
5.3.1 f'c = 20 MPa	85
5.3.2 f°c = 30 MPa	92
5.3.3 f'c = 40 MPa	93
5.3.4 f'c = 50 MPa	100
5.3.5 f'c = 60 MPa	107
5.4 Investigating the Effect of Different Reinforcement Bars Grades as per Egyptian Code for Design of Reinforced Concrete Structures	114
5.4.1 Grade 60/40	114
5.4.2 Grade B420DWR	115
5.4.3 Grade B400DWR	122
5.4.4 Grade B400CWR	129
5.4.5 Grade B350DWR	136
5.4.6 Grade B240D-P	143
5.4.7 Additional Output Data for Reinforcement Grades Cases Under effect of $a_g = 0.60g$	150

and 0.80g	
5.5 Effect of Storey Height (h)	151
5.5.1 h = 3 m	151
5.5.2 h = 3.5 m	152
5.5.3 h = 4 m	159
5.5.4 h = 4.5 m	166
5.6 Effect of Moment Frames and Walls Configuration	173
5.6.1 Seven Moment Frames with No Shear Walls	173
5.6.2 Five Moment Frames with Two Shear Walls	179
5.6.3 Three Moment Frames with Four Shear Walls	180
5.6.4 One Moment Frame with Six Shear Walls	187
5.6.5 No Moment Frames with Seven Shear Walls	194
5.7 Over Strength Factor (R _s)	201
CHAPTER 6 : DISCUSSION OF NUMERICAL RESULTS	203
6.1 Introduction	203
6.2 Effect of Earthquake Ground Acceleration (ag)	203
6.3 Effect of Concrete Compressive Strength (f'c)	205
6.4 Effect of Reinforcement Grades	206
6.5 Effect of Storey Height (h)	209
6.6 Effect of Moment Frames and Walls Configuration	211
6.7 A Proposed Equation for the Response Modification Factor (R)	214
CHAPTER 7 : CONCLUSIONS AND FUTURE RESEARCHES	216
7.1 Introduction	216
7.2 Conclusions	216
7.3 Recommendations and Future Researches	218

LIST OF FIGURES

Figure (2.1):	Base shear vs. Displacement for Elastic and Inelastic Behavior	5
Figure (2.2):	Strength vs. Period for Elastic and Inelastic Behavior	5
Figure (2.3):	Ductility factor (Rµ) vs. Period (T) by Newmark and Hall	7
Figure (2.4):	Ductility factor (Rµ) vs. Period (T) by Berrill et al.	8
Figure (2.5):	Comparison of $R\mu$ for Miranda vs. Nasser and Krawinkler vs. Riddell	9
Figure (2.6a):	Frame (1) studied by Bertero and Bertero.	12
Figure (2.6b):	Frame (2) studied by Bertero and Bertero.	12
Figure (2.6c):	Soft Storey Failure for Frame (1)	12
Figure (2.6d):	Soft Storey Failure for Frame (2)	12
Figure (2.6e):	Strong Column – Weak Beam Failure for Frame (1)	13
Figure (2.6f):	Strong Column – Weak Beam Failure for Frame (2)	13
Figure (2.7):	Over Strength Factor vs. Elastic Period by Osteraas and Krawinkler	16
Figure (3.1):	Division of Structre into Rigid Elements connected by Springs	18
Figure (3.2):	Degrees of Freedom and Corresponding Stresses	19
Figure (3.3):	Modeling of Cracks in AEM	19
Figure (3.4):	Different Springs Conditions during Collapse Historey of a Structure	20
Figure (3.5):	Structural Elements and Reinforcing Steel in ELS	21
Figure (3.6):	Maekawa Compression Model used in ELS.	21
Figure (3.7):	Concrete Shear Model used in ELS.	22
Figure (3.8):	Reinforcing Steel Model used in ELS.	22
Figure (3.9):	Reinforced Concrete Pier studied by Kawashima et al.	23
Figure (3.10):	ELS Model of Reinforced Concrete Pier studied by Kawashima et al	23
Figure (3.11):	ELS vs. Experimental Results by Kawashima et al.	24
Figure (3.12):	ELS Model constructed by AlHafian	24
Figure (3.13):	Dimensions and Reinforcement by Chaudat et al.	25
Figure (3.14):	ELS vs. Experimental Storey Displacement at 0.05g (Structure in Elastic stage) by AlHafian	26
Figure (3.15):	ELS vs. Experimental Storey Displacement at 0.3g (Structure in Inelastic stage) by AlHafian	26
Figure (3.16):	Soft Storey Collapse Mechansim by AlHafian	27
Figure (3.17):	Irregular Frames studied by Lu et al.	28
Figure (3.18):	Irregular Frames' ELS Models studied by AlHafian (BF1 on left side and DCF on right side).	28
Figure (3.19):	ELS vs. Experimental Storey Displacement ar 0.6g for Irregular Frames studied by AlHafian (BF1 on left side and DCF on right side)	29
Figure (3.20):	Comparison between AEM, FEM and DEM	30
Figure (4.1):	Study Case Configuration	31
Figure (4.2):	Response Spectrum Curve of ECP-201-2012	33

Figure (4.3):	Slab Reinforcement	35
Figure (4.4a):	Beams Reinforcement at Critical Section [Column Face]	35
Figure (4.4b):	Beams Reinforcement Details in Structures subjected to Lateral and Gravity Loads (ECP 203-2007 - Annex II - Reinforcement Detailing Guide)	36
Figure (4.4c):	Stirrups Arrangement at Critical Section of Beams	37
Figure (4.5a):	Columns Reinforcement at First Floor	37
Figure (4.5b):	Columns Reinforcement Details in Ductile Moment Frames Structures (ECP 203-2007 - Annex II - Reinforcement Detailing Guide)	38
Figure (4.6):	Walls' Dimensions and Reinforcement at First Floor	39
Figure (4.7):	Reference Case 3D Model in ELS	40
Figure (4.8):	Number of Elements vs. Drift	41
Figure (4.9a):	SIMQKE Software by Gasprini et al	42
Figure (4.9b):	Intensity Envelope Function by Gasprini et al	42
Figure (4.10a):	Time Historey for ag = 0.15g	44
Figure (4.10b):	Time Historey for ag = 0.30g	44
Figure (4.10c):	Time Historey for ag = 0.45g	44
Figure (4.10d):	Time Historey for ag = 0.60g	45
Figure (4.10e):	Time Historey for ag = 0.80g	45
Figure (4.11):	Studied Configurations besides Reference Case	47
Figure (5.1):	Inelastic Base Shear in x-direction vs. Time $(a_g = 0.15g)$	50
Figure (5.2):	Elastic Base Shear in x-direction vs. Time ($a_g = 0.15g$)	50
Figure (5.3):	Inelastic Drift in x-direction vs. Time (ag = 0.15g)	50
Figure (5.4):	Inelastic Base Shear vs. Inelastic Drift in x-direction (ag = 0.15 g)	51
Figure (5.5):	Stress-Strain Curve for Corner Column RFT (ag = $0.15g$)	51
Figure (5.6):	Stress-Strain Curve for Corner Column Concrete $(ag = 0.15g)$	51
Figure (5.7):	Stress-Strain Curve for Edge Column RFT (ag = $0.15g$)	52
Figure (5.8):	Stress-Strain Curve for Edge Column Concrete (ag = 0.15g)	52
Figure (5.9):	Stress-Strain Curve for Interior Column RFT (ag = 0.15g)	52
Figure (5.10):	Stress-Strain Curve for Interior Column Concrete (ag = $0.15g$)	53
Figure (5.11):	Stress-Strain Curve for Wall RFT (ag = 0.15g).	53
Figure (5.12):	Stress-Strain Curve for Wall Concrete (ag = 0.15g)	53
Figure (5.13):	Stress-Strain Curve for Beam RFT (ag = 0.15g).	54
Figure (5.14):	Stress-Strain Curve for Beam Concrete (ag = 0.15g).	54
Figure (5.15):	Mode Shape 1 (Left) and Mode Shape 2 (Right)	55
Figure (5.16):	Mode Shape 1 period vs. Time (ag = 0.15g)	55
Figure (5.17):	Mode Shape 2 period vs. Time $(ag = 0.15g)$	56
Figure (5.18):	Acceleration Contour at Time of Maximum Top Floor Acceleration (ag = 0.15g)	56
Figure (5.19):	Inelastic Base Shear in x-direction vs. Time $(a_g = 0.30g)$	58
Figure (5.20):	Elastic Base Shear in x-direction vs. Time ($a_g = 0.30g$).	58

Figure (5.21):	Inelastic Drift in x-direction vs. Time (ag = 0.30g).	58
Figure (5.22):	Inelastic Base Shear vs. Inelastic Drift in x-direction (ag = 0.30g)	59
Figure (5.23):	Stress-Strain Curve for Corner Column RFT (ag = $0.30g$)	59
Figure (5.24):	Stress-Strain Curve for Corner Column Concrete $(ag = 0.30g)$	59
Figure (5.25):	Stress-Strain Curve for Edge Column RFT (ag = 0.30g)	60
Figure (5.26):	Stress-Strain Curve for Edge Column Concrete (ag = 0.30g)	60
Figure (5.27):	Stress-Strain Curve for Interior Column RFT (ag = 0.30g)	60
Figure (5.28):	Stress-Strain Curve for Interior Column Concrete (ag = 0.30g)	61
Figure (5.29):	Stress-Strain Curve for Wall RFT (ag = 0.30g)	61
Figure (5.30):	Stress-Strain Curve for Wall Concrete (ag = 0.30g)	61
Figure (5.31):	Stress-Strain Curve for Beam RFT (ag = 0.30g).	62
Figure (5.32):	Stress-Strain Curve for Beam Concrete (ag = 0.30g).	62
Figure (5.33):	Mode Shape 1 period vs. Time (ag = 0.30g)	62
Figure (5.34):	Mode Shape 2 period vs. Time (ag = 0.30g)	63
Figure (5.35):	Acceleration Contour at Time of Maximum Top Floor Acceleration (ag = 0.30g)	63
Figure (5.36):	Inelastic Base Shear in x-direction vs. Time $(a_g = 0.45g)$	65
Figure (5.37):	Elastic Base Shear in x-direction vs. Time ($a_g = 0.45g$).	65
Figure (5.38):	Inelastic Drift in x-direction vs. Time (ag = 0.45g).	65
Figure (5.39):	Inelastic Base Shear vs. Inelastic Drift in x-direction (ag = 0.45 g)	66
Figure (5.40):	Stress-Strain Curve for Corner Column RFT (ag = $0.45g$)	66
Figure (5.41):	Stress-Strain Curve for Corner Column Concrete $(ag = 0.45g)$	66
Figure (5.42):	Stress-Strain Curve for Edge Column RFT (ag = 0.45g)	67
Figure (5.43):	Stress-Strain Curve for Edge Column Concrete (ag = 0.45g)	67
Figure (5.44):	Stress-Strain Curve for Interior Column RFT (ag = 0.45g).	67
Figure (5.45):	Stress-Strain Curve for Interior Column Concrete (ag = 0.45g)	68
Figure (5.46):	Stress-Strain Curve for Wall RFT (ag = 0.45g).	68
Figure (5.47):	Stress-Strain Curve for Wall Concrete (ag = 0.45g)	68
Figure (5.48):	Stress-Strain Curve for Beam RFT (ag = 0.45g).	69
Figure (5.49):	Stress-Strain Curve for Beam Concrete (ag = 0.45g).	69
Figure (5.50):	Mode Shape 1 period vs. Time (ag = 0.45g)	69
Figure (5.51):	Mode Shape 2 period vs. Time (ag = 0.45g)	70
Figure (5.52):	Acceleration Contour at Time of Maximum Top Floor Acceleration (ag = 0.45g)	70
Figure (5.53):	Inelastic Base Shear in x-direction vs. Time $(a_g = 0.60g)$	72
Figure (5.54):	Elastic Base Shear in x-direction vs. Time (ag = 0.60g).	72
Figure (5.55):	Inelastic Drift in x-direction vs. Time (ag = 0.60g)	72
Figure (5.56):	Inelastic Base Shear vs. Inelastic Drift in x-direction (ag = 0.60 g)	73
Figure (5.57):	Stress-Strain Curve for Corner Column RFT (ag = 0.60g)	73
Figure (5.58):	Stress-Strain Curve for Corner Column Concrete (ag = 0.60g)	73

Figure (5.59):	Stress-Strain Curve for Edge Column RFT (ag = 0.60g)	74
Figure (5.60):	Stress-Strain Curve for Edge Column Concrete (ag = 0.60g)	74
Figure (5.61):	Stress-Strain Curve for Interior Column RFT (ag = 0.60g)	74
Figure (5.62):	Stress-Strain Curve for Interior Column Concrete (ag = 0.60g)	75
Figure (5.63):	Stress-Strain Curve for Wall RFT (ag = 0.60g)	75
Figure (5.64):	Stress-Strain Curve for Wall Concrete (ag = 0.60g)	75
Figure (5.65):	Stress-Strain Curve for Beam RFT (ag = 0.60g).	76
Figure (5.66):	Stress-Strain Curve for Beam Concrete (ag = 0.60g).	76
Figure (5.67):	Mode Shape 1 period vs. Time (ag = 0.60g)	76
Figure (5.68):	Mode Shape 2 period vs. Time (ag = 0.60g)	77
Figure (5.69):	Acceleration Contour at Time of Maximum Top Floor Acceleration (ag = 0.60g)	77
Figure (5.70):	Inelastic Base Shear in x-direction vs. Time $(a_g = 0.80g)$	79
Figure (5.71):	Elastic Base Shear in x-direction vs. Time ($a_g = 0.80g$)	79
Figure (5.72):	Inelastic Drift in x-direction vs. Time (ag = 0.80g)	79
Figure (5.73):	Inelastic Base Shear vs. Inelastic Drift in x-direction (ag = 0.80g).	80
Figure (5.74):	Stress-Strain Curve for Corner Column RFT (ag = 0.80 g)	80
Figure (5.75):	Stress-Strain Curve for Corner Column Concrete (ag = 0.80g)	80
Figure (5.76):	Stress-Strain Curve for Edge Column RFT (ag = 0.80g)	81
Figure (5.77):	Stress-Strain Curve for Edge Column Concrete (ag = 0.80g)	81
Figure (5.78):	Stress-Strain Curve for Interior Column RFT (ag = 0.80g)	81
Figure (5.79):	Stress-Strain Curve for Interior Column Concrete (ag = 0.80g).	82
Figure (5.80):	Stress-Strain Curve for Wall RFT (ag = 0.80g)	82
Figure (5.81):	Stress-Strain Curve for Wall Concrete (ag = 0.80g)	82
Figure (5.82):	Stress-Strain Curve for Beam RFT (ag = 0.80g).	83
Figure (5.83):	Stress-Strain Curve for Beam Concrete (ag = 0.80g)	83
Figure (5.84):	Mode Shape 1 period vs. Time (ag = 0.80g)	83
Figure (5.85):	Mode Shape 2 period vs. Time (ag = 0.80g)	84
Figure (5.86):	Acceleration Contour at Time of Maximum Top Floor Acceleration (ag = 0.80g)	84
Figure (5.87):	Inelastic Base Shear in x-direction vs. Time (f [*] c = 20 MPa)	86
Figure (5.88):	Elastic Base Shear in x-direction vs. Time (f [*] c = 20 MPa)	86
Figure (5.89):	Inelastic Drift in x-direction vs. Time (f [*] c = 20 MPa)	86
Figure (5.90):	Inelastic Base Shear vs. Inelastic Drift in x-direction (f'c = 20 MPa)	87
Figure (5.91):	Stress-Strain Curve for Corner Column RFT (f'c = 20 MPa)	87
Figure (5.92):	Stress-Strain Curve for Corner Column Concrete ($f^{*}c = 20 \text{ MPa}$)	87
Figure (5.93):	Stress-Strain Curve for Edge Column RFT (f'c = 20 MPa)	88
Figure (5.94):	Stress-Strain Curve for Edge Column Concrete (f [*] c = 20 MPa)	88
Figure (5.95):	Stress-Strain Curve for Interior Column RFT (f [*] c = 20 MPa)	88
Figure (5.96):	Stress-Strain Curve for Interior Column Concrete (f'c = 20 MPa)	89

Figure (5.97):	Stress-Strain Curve for Wall RFT (f'c = 20 MPa)	89
Figure (5.98):	Stress-Strain Curve for Wall Concrete (f'c = 20 MPa)	89
Figure (5.99):	Stress-Strain Curve for Beam RFT (f [*] c = 20 MPa).	90
Figure (5.100):	Stress-Strain Curve for Beam Concrete (f'c = 20 MPa).	90
Figure (5.101):	Mode Shape 1 period vs. Time ($f^{*}c = 20 \text{ MPa}$)	90
Figure (5.102):	Mode Shape 2 period vs. Time ($f^{*}c = 20 \text{ MPa}$)	91
Figure (5.103):	Acceleration Contour at Time of Maximum Top Floor Acceleration (f [*] c = 20 MPa).	91
Figure (5.104):	Inelastic Base Shear in x-direction vs. Time (f ² c = 40 MPa)	94
Figure (5.105):	Elastic Base Shear in x-direction vs. Time (f'c = 40 MPa)	94
Figure (5.106):	Inelastic Drift in x-direction vs. Time (f'c = 40 MPa)	94
Figure (5.107):	Inelastic Base Shear vs. Inelastic Drift in x-direction (f [*] c = 40 MPa)	95
Figure (5.108):	Stress-Strain Curve for Corner Column RFT (f'c = 40 MPa)	95
Figure (5.109):	Stress-Strain Curve for Corner Column Concrete ($f^{*}c = 40 \text{ MPa}$)	95
Figure (5.110):	Stress-Strain Curve for Edge Column RFT (f'c = 40 MPa)	96
Figure (5.111):	Stress-Strain Curve for Edge Column Concrete (f'c = 40 MPa)	96
Figure (5.112):	Stress-Strain Curve for Interior Column RFT (f'c = 40 MPa)	96
Figure (5.113):	Stress-Strain Curve for Interior Column Concrete (f'c = 40 MPa)	97
Figure (5.114):	Stress-Strain Curve for Wall RFT (f'c = 40 MPa)	97
Figure (5.115):	Stress-Strain Curve for Wall Concrete (f'c = 40 MPa)	97
Figure (5.116):	Stress-Strain Curve for Beam RFT (f [*] c = 40 MPa).	98
Figure (5.117):	Stress-Strain Curve for Beam Concrete (f'c = 40 MPa).	98
Figure (5.118):	Mode Shape 1 period vs. Time (f [°] c = 40 MPa).	98
Figure (5.119):	Mode Shape 2 period vs. Time ($f^{\circ}c = 40 \text{ MPa}$)	99
Figure (5.120):	Acceleration Contour at Time of Maximum Top Floor Acceleration (f [*] c = 40 MPa).	99
Figure (5.121):	Inelastic Base Shear in x-direction vs. Time (f'c = 50 MPa)	101
Figure (5.122):	Elastic Base Shear in x-direction vs. Time (f'c = 50 MPa)	101
Figure (5.123):	Inelastic Drift in x-direction vs. Time (f'c = 50 MPa)	101
Figure (5.124):	Inelastic Base Shear vs. Inelastic Drift in x-direction (f [*] c = 50 MPa)	102
Figure (5.125):	Stress-Strain Curve for Corner Column RFT (f'c = 50 MPa)	102
Figure (5.126):	Stress-Strain Curve for Corner Column Concrete (f [*] c = 50 MPa)	102
Figure (5.127):	Stress-Strain Curve for Edge Column RFT (f'c = 50 MPa)	103
Figure (5.128):	Stress-Strain Curve for Edge Column Concrete (f'c = 50 MPa)	103
Figure (5.129):	Stress-Strain Curve for Interior Column RFT (f [*] c = 50 MPa)	103
Figure (5.130):	Stress-Strain Curve for Interior Column Concrete (f'c = 50 MPa)	104
Figure (5.131):	Stress-Strain Curve for Wall RFT (f'c = 50 MPa)	104
Figure (5.132):	Stress-Strain Curve for Wall Concrete (f'c = 50 MPa)	104
Figure (5.133):	Stress-Strain Curve for Beam RFT (f [*] c = 50 MPa).	105
Figure (5.134):	Stress-Strain Curve for Beam Concrete (f'c = 50 MPa).	105

Figure (5.135):	Mode Shape 1 period vs. Time (f'c = 50 MPa).	105
Figure (5.136):	Mode Shape 2 period vs. Time (f'c = 50 MPa)	106
Figure (5.137):	Acceleration Contour at Time of Maximum Top Floor Acceleration (f ² c = 50 MPa).	106
Figure (5.138):	Inelastic Base Shear in x-direction vs. Time (f'c = 60 MPa)	108
Figure (5.139):	Elastic Base Shear in x-direction vs. Time (f'c = 60 MPa).	108
Figure (5.140):	Inelastic Drift in x-direction vs. Time (f [*] c = 60 MPa)	108
Figure (5.141):	Inelastic Base Shear vs. Inelastic Drift in x-direction (f'c = 60 MPa)	109
Figure (5.142):	Stress-Strain Curve for Corner Column RFT ($f^{*}c = 60 \text{ MPa}$)	109
Figure (5.143):	Stress-Strain Curve for Corner Column Concrete (f'c = 60 MPa)	109
Figure (5.144):	Stress-Strain Curve for Edge Column RFT (f [*] c = 60 MPa)	110
Figure (5.145):	Stress-Strain Curve for Edge Column Concrete (f'c = 60 MPa)	110
Figure (5.146):	Stress-Strain Curve for Interior Column RFT (f'c = 60 MPa)	110
Figure (5.147):	Stress-Strain Curve for Interior Column Concrete (f [*] c = 60 MPa)	111
Figure (5.148):	Stress-Strain Curve for Wall RFT (f [*] c = 60 MPa)	111
Figure (5.149):	Stress-Strain Curve for Wall Concrete (f'c = 60 MPa)	111
Figure (5.150):	Stress-Strain Curve for Beam RFT (f'c = 60 MPa).	112
Figure (5.151):	Stress-Strain Curve for Beam Concrete (f'c = 60 MPa).	112
Figure (5.152):	Mode Shape 1 period vs. Time (f'c = 60 MPa).	112
Figure (5.153):	Mode Shape 2 period vs. Time (f'c = 60 MPa)	113
Figure (5.154):	Acceleration Contour at Time of Maximum Top Floor Acceleration (f ² c = 60 MPa).	113
Figure (5.155):	Inelastic Base Shear in x-direction vs. Time (Grade B420DWR).	116
Figure (5.156):	Elastic Base Shear in x-direction vs. Time (Grade B420DWR)	116
Figure (5.157):	Inelastic Drift in x-direction vs. Time (Grade B420DWR).	116
Figure (5.158):	Inelastic Base Shear vs. Inelastic Drift in x-direction (Grade B420DWR)	117
Figure (5.159):	Stress-Strain Curve for Corner Column RFT (Grade B420DWR)	117
Figure (5.160):	Stress-Strain Curve for Corner Column Concrete (Grade B420DWR)	117
Figure (5.161):	Stress-Strain Curve for Edge Column RFT (Grade B420DWR)	118
Figure (5.162):	Stress-Strain Curve for Edge Column Concrete (Grade B420DWR)	118
Figure (5.163):	Stress-Strain Curve for Interior Column RFT (Grade B420DWR).	118
Figure (5.164):	Stress-Strain Curve for Interior Column Concrete (Grade B420DWR).	119
Figure (5.165):	Stress-Strain Curve for Wall RFT (Grade B420DWR).	119
Figure (5.166):	Stress-Strain Curve for Wall Concrete (Grade B420DWR).	119
Figure (5.167):	Stress-Strain Curve for Beam RFT (Grade B420DWR)	120
Figure (5.168):	Stress-Strain Curve for Beam Concrete (Grade B420DWR)	120
Figure (5.169):	Mode Shape 1 period vs. Time (Grade B420DWR)	120
Figure (5.170):	Mode Shape 2 period vs. Time (Grade B420DWR)	121
Figure (5.171):	Acceleration Contour at Time of Maximum Top Floor Acceleration (Grade B420DWR)	121