GROWTH, PUBERTY AND SKELETAL DYSPLASIA IN BETA THALASSEMIA MAJOR

Thesis submitted in partial fulfillment of the Master Degree in Pediatrics.

> By Ahmed Sobhi Abd El-Gawad M.B.B.ch

Under Supervision of

Prof. Dr. Mohamed Salah El-Din El-Kholy

Professor of pediatrics, Faculty of Medicine – Ain Shams University

Prof. Dr. Azaa Abd El-Gawad Tantawy

Professor of Pediatrics Faculty of Medicine – Ain Shams University

Dr. Mona Rashad Aly

Assistant professor of Pediatrics Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2010

Acknowledgments

At first and foremost thanks to "Allah" who gave me the power to finish this work.

I would like to express my endless gratitude and appreciation to prof. Dr. Mohamd Salah El-Din El-Kholy, prof.Dr. Azza Abd-El Gawad, professor of pediatrics, Faculty of Medicine, Ain Shams University, for giving me the opportunity to work under their meticulous supervision, their honesty assistance and patience make me truly indebted to her.

I find no words by which I can express my deepest thanks and gratitude to my honored professor **prof. Dr. Heba Hassan El Sedafy,** professor of Pediatrics, Faculty of Medicine, Ain Shams University for the continuous kind encouragement, support and guidance, she gave me throughout the entire work. It has been an honor and privilege to work under her generous supervision.

To my parents, my dear wife and to every one who participated in a way or another in this work, I owe my thanks and appreciation.

A great deal of my gratitude goes to all patients and their parents wishing them a very rapid and complete permanent recovery.

Ahmed Sobhi Abd El-Gawad

LIST OF ABBREVIATION

DMD		
BMD	=	Bone mineral density – content BMC.
BMT	=	Bone marrow transplantation.
B-Thal	=	B-thalssenia major
C.H.F	=	Congestive heart failure.
DFO	=	Desferrioxamine.
DXA	=	Dual energy x-ray absorpitometey
ECHO	=	Echocardiography.
GH	=	Growth hormone
GHRH	=	Gonadotrophin releasing hormone
GHRH	=	Growth hormone – releasing hormone.
HBV	=	Hepatitis B-virus.
HCV	=	Hepatitis C-virus.
HLA	=	Human leukocyte antigen
H-P axis	=	Hypothalmic pituitary axis.
IGF-1	=	Insulin growth factor-1
IGF-BF-3	=	Insulin growth factor binding protein -3
LDL	=	Low density lipoprotein.
LHRH	=	Leutinizing hormone releasing hormone.
LIC	=	Liver iron content
M.R.I	=	Magnetic resonance imaging
MCH	=	Mean corpuscular hemoglobin
MCV	=	Mean corpuscular volume.
PCR	=	Polymerase chain reaction.
RDW	=	Red cell distribution width
SA	=	Secondary amenorrhea.
SPSS	=	Statistical package for social science.
SQUID	=	Super conducting quantitative interference device.
STFR	=	Soluble transferring receptors.
Т	=	Testosterone.

LIST OF TABLES

Tab No.	Title Page No).
Table (1):	Comparison of various approaches to	
	heart iron overload evaluation	
Table (2):	Comparison of iron Chelators 52	
Table (3):	Demography of the studied cases 104	
Table (4):	Auxology of the studied cases 105	
Table (5):	Laboratory parameters and	
	demographic data of the studied cases 106	
Table (6):	Bone density on X-ray films of the	
	studied cases 108	
Table (7):	Distribution of the studied cases	
	according to hepatitis virus infections 109	
Table (8):	Distribution of the studied cases according	
	to height SDS 109	
Table (9):	Distribution of the studied cases	
	according to sitting height SDS 109	
Table (10):	Distribution of the studied cases according	
	to leg length SDS110	
Table (11):	Distribution of the studied cases according	
	to span SDS 110	
Table (12):	Distribution of the studied cases according	
	to BMI SDS 110	
Table (13):	Auxological distribution according to sex 111	
Table (14):	Distribution of short stature and delayed	
	puberty according to sex 112	
Table (15a):	No. and percent of short stature and short	
	trunk subjects 113	

Tab No.	Title	Page No.
Table (15b):	Role of short trunk as a cause of short	
	stature	113
Table (16a):	Comparison between males and	
	females regarding auxological	
	parameters	114
Table (16b):	Comparison between males and	
	females regarding laboratory	
	parameters and demographic data	115
Table (16c):	Comparison between males and	
	females regarding bone density on X-	
	ray films	116
Table (16d):	Comparison between males and	
	females regarding hepatitis virus	
	infections.	117
Table (17a):	Comparison between normal stature	
	and short stature children regarding	
	auxological parameters	118
Table (17b)	:Comparison between normal stature	
	and short stature children regarding	
	laboratory parameters and	
	demographic data	120
Table (17c):	Comparison between normal stature and	
	short stature children regarding bone	
	density on X-ray films	121
	-	

Tab No.	Title	Page No.
Table (17d):	Comparison between normal stature	
	and short stature children regarding	
	hepatitis virus infection	122
Table (18):	Comparison between normal stature	
	and short stature cases according to Hb	
	in children ≤ 10 years	122
Table (19a):	Comparison between children with	
	normal puberty and delayed puberty	
	regarding auxological parameters	123
Table (19b):	Comparison between children with	
	normal puberty and delayed puberty	
	regarding laboratory parameters and	
	demographic data	125
Table (19c):	Comparison between children with	
	normal puberty and delayed puberty	
	regarding bone density on X-ray films	126
Table (19d):	Comparison between children with	
	normal and delayed puberty regarding	
	hepatitis virus infections	127
Table (20a):	Comparison between auxological	
	parameters of the studied cases	
	according to serum ferritin	128
Table (20b):	Comparison between laboratory	
	parameters and demographic data of	
	the studied cases according to serum	
	ferritin	129

Tab No.	Title	Page No.
Table (20c):	Comparison between serum ferritin	
	≤ 2000 (ng/ml) and serum ferritin	
	>2000(ng/ml) regarding bone density on	
	X-ray films	130
Table (21a):	Comparison between auxological	
	parameters of the studied cases	
	according to iron chelation therapy	
	compliance	131
Table (21b):	Comparison between laboratory	
	parameters and demographic data of	
	the studied cases according to iron	
	chelation therapy compliance	132
Table (21c):	Comparison between iron chelation	
	therapy compliance and bone density	
	on X-ray films	133
Table (22a):	Comparison between auxological	
	parameters of the studied cases	
	according to short trunk	134
Table (22b):	Comparison between laboratory	
	parameters demographic data of the	
	studied cases according to short trunk	136
Table (22c):	Comparison between short trunk and	
	normal trunk subjects regarding bone	105
	density on X-ray films	137
Table (23a):	Comparison between three age groups	
	regarding auxological parameters	138

Tab No.	Title	Page No.
Table (23b):	Comparison between three age groups	
	regarding auxological parameters	139
Table (23c):	Comparison between three age groups	
	regarding auxological parameters	140
Table (24):	Relation between normal and short	
	children before and after cut off age of	
	puberty	143
Table (25):	Relation between normal trunk and short	
	trunk children before and after cut off age	
	of puberty	143
Table (26):	Relation between normal lower segment	
	and short lower segment children before	
	and after cut off age of puberty	143
Table (27):	Relation between normal span and short	
	span children before and after cut off age	
	of puberty	144
Table (28):	Relation between normal and low BMI	
	before and after cut off age of puberty	144

LIST OF FIGURE

Fig. No.	Title	Page No.
Figure (1):	Management of Thalassemia and Treatment- Related Complications	47
Figure (2):	Radiographs of the femoral and tibial metaphyses of a child treated with deferoxamine therapy	92
Figure (3): 1	Lateral viewof the thoracic spine in an 11-year, 9- month-old girl with thalassemia major treated with intensive deferoxamine throughout childhood	92
Figure (4):	Distribution of the studied cases according to sex	
Figure (5): 1	Demonstrating percentage of compliance in the studied cases	107
Figure (6):	Showing distribution of spinal osteoporosis in the studied cases	108
Figure (7)	: Comparison between percentage of short stature and short trunk in relation to sex	111
Figure (8):	Prevalence of short trunk and short stature patients among delayed puberty subjects	112
Figure (9): I	Prevalence of short stature in our studied cases	119

LIST OF FIGURE (Cont...)

Fig. No.	. Title	Page No.
Figure	(10): Comparison between male and female	
	according to puberty	124
Figure	(11): Prevalence of short trunk in the studied cases	135
Figure	(12): Mean serum ferritin in the three age group of the studied cases	141
Figure	(13): Mean serum ferritin among different categories	141
Figure	(14): Distribution of short patients in 3 age groups	142
Figure	(15): Distribution of short trunk in 3 age groups	142
Figure	(16): Bone age delay among different categories	145
Figure	(17): Start chelation age among different categories	145

CONTENTS

Introduction	1
Aim of the Work	5
Review of Literature	6
Patients and Methods	97
Results	. 100
Discussion	. 145
Conclusion	. 151
Recommendations	. 152
Summary	. 153
References	. 158
Arabic summary	

Introduction

INTRODUCTION

The cause of growth retardation in the inherited blood disorder β -thalassemia major (β -thal) has long been a subject of debate. This has become an issue since children with β -thal are undergoing hypertransfusion and iron chelation therapy, and now living well into their thirties and forties. Therefore, in addition to growth retardation, many of the endocrinopathies such as hypogonadism, hypothyroidism, hypoparathyroidism and diabetes mellitus, which were not apparent before, are now being diagnosed and treated (**Spiliotis, 1998**).

Normal growth of β -thal children during the first 10 years of life depends upon the maintenance of hemoglobin levels above 8.5 g/dl. During this period of the child's life hypoxia may be the main factor retarding growth. If deferoxamine, which is used for iron chelation therapy, is used before the age of 3 years it also produces marked stunted growth with a clinical and radiologic rickets-like syndrome. This is because, before there is iron overload from the blood transfusions, deferoxamine is thought to also chelate other essential minerals besides iron (**De Virgilis et al, 1988**).

Introduction

In addition to short stature, an abnormal sitting height has been reported in studies on thalassemic patients from Australia and Italy. Among the short Italian patients with thalassemia, the majority (77%) of the patients had disproportionate short stature with short trunk but with less severe impairment of subischial leg length. This abnormality of body proportion was due to platyspondyly as revealed by skeletal radiology and was present as early as 4 years of age but was more common in adolescence. It is now recognised that short stature and skeletal dysplasia can be induced by injudicious use of desferrioxamine. Clinically, the patients with desferrioxamine-induced skeletal dysplasia have short trunk, genu valgum, metaphyseal widening of long bones, joint stiffness and a decreased growth velocity. Radiological changes include thickened growth plate with widening and cupping of the metaphyses of long bones, subchondral bone, osteoporosis of sclerosis and small radioluscent metaphyseal lesions.

The studies on growth hormone (GH) secretion in patients have shown both normal and reduced response to a variety of pharmacological stimuli. It is likely that as the patients survive

2

Introduction

longer, the prevalence of GH deficiency or neurosecretory dysfunction among these patients will increase with advancing age. The present evidence of normal GH reserve and serum levels with low IGF-1 GHBP serum and IGFBP-3 concentrations suggests that partial secondary a GH insensitivity state exists in patients with transfusion-dependent thalassemia major and that supraphysiological doses of GH can overcome this resistance and lead to an improvement in the growth of such patients. (Low, 2005).

Hypogonadism is the frequent endocrine most complication in patients with thalassemia and is an important cause of growth retardation in adolescence. Even in patients who have gone through spontaneous puberty, secondary amenorrhoea and hypogonadism will invariably develop with time. Hypogonadotropic hypogonadism is due to damage from iron deposition in the hypothalamus and pituitary gland but occasionally primary gonadal failure can also occur. The pituitary gonadotropes are particularly sensitive to oxidative damage induced by iron overload. Magnetic resonance imaging (MRI) of the anterior pituitary has shown that a decrease in