

Faculty of Science Chemistry Department

Bioleaching – Extraction studies of some metal values from the mineralized younger granite of El Missikat – Central Eastern Desert – Egypt

A Thesis

"Submitted for the degree of Master of Science as a partial fulfilment for requirements of the master of Science"

> By Shimaa Magdy Abd El Latiff Goda (B.Sc. Biochemistry/Chemistry, 2008)

Supervisors

Prof. Dr. Mostafa M. H. Khalil Professor of Chemistry, Chemistry Department, Faculty of Science, Ain Shams University

Prof. Dr. Omneya M. El Hussaini Professor of Chemistry, Nuclear Material Authority

Dr. Maisa M. Amin Assistant Professor of Microbiology, Nuclear Material Authority

2016

Faculty of Science Chemistry Department

Bioleaching – Extraction studies of some metal values from the mineralized younger granite of El Missikat – Central Eastern Desert – Egypt

Thesis submitted by

Shimaa Magdy Abd El Latiff Goda

For the degree of M.Sc of science in Inorganic chemistry

То

Department of Chemistry Faculty of Science Ain Shams University 2016

Faculty of Science Chemistry Department

Approval sheet

Name of candidate: **Shimaa Magdy Abd Al Latiff Goda** Degree: M.Sc. Degree in Chemistry

Thesis Title: Bioleaching – Extraction studies of some metal values from the mineralized younger granite of El Missikat – Central Eastern Desert – Egypt

This Thesis has been approved by:

1-Prof. Dr. Mostafa M. H. Khalil2-Prof. Dr. Omneya M. El Hussaini3-Dr. Maisa M. Amin

Approval

Chairman of Chemistry Department **Prof. Dr. Ibrahim H. A. Badr** 2016

Statement

This thesis is submitted in partial fulfillment of the M.Sc Degree, Faculty of Science, Ain Shams University

In addition to the work carried out in this thesis the candidate, **Shimaa Magdy Abd El Latiff**, has attended postgraduate studies in the following topics and passed successfully in the final examination in the academic year 2009-2010:

621	Coordination Chemistry
622	Radiochemistry and Separation Techniques
623	Electrochemistry and Electrochemical Analysis
624	Group Theory and Computer Programming
625	Spectroscopic Methods for Structural and
Analytic	cal Chemistry
	TOEFL

Prof. Dr. Ibrahim H. A. Badr

Chairman of Chemistry Department Faculty of Science-Ain Shams University

Dedication

To my parents Magdy Abd El Latíff and Salwa swífy The reason for what I am today. Thanks for your contínuous endless love, support and care. Thanks because you never stopped belíeving in me.

To my wonderful sister Abeer

I am truly thankful for having you in my life. Thanks for your love, patience, and support.

To my awesome brother Mohamed Special thanks for his kind support and contribution to the success of my studies.

Shimaa Maqdy

First of all, I deeply grateful to Allah for giving me the wisdom, knowledge and strength to complete this work successfully.

I would like to express my deepest gratitude to my supervisor, **Prof. Dr. Omneya M. El Hussaini**, Professor of chemistry, Nuclear Materials Authority, for giving me the opportunity to work in this field and for giving me the chance to be one of her students. I learned from her insight a lot. Her guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my master study. She did not only guide this work and find time to discuss with me but also gave me the confidence to express my ideas freely. Her leadership, support, attention to detail, hard work have set an example I hope to match someday. Actually she was more than a supervisor, she was a teacher who inspired me and pushed me forward. I wish to express my sincere thanks to **Prof. Dr. Mostafa M. Khalil,** Professor of Inorganic and analytical chemistry, Faculty of Science, Ain Shams University, for his help, supervising, encouragement and support in the thesis.

I would also like to thank **Dr. Maisa Mohamed Amin**, assistant professor of Microbiology, Nuclear Materials Authority for her help, cooperation and support during the research.

Special thanks to **Dr. Galal Dabour**, assistant professor at Nuclear Materials Authority for his great help and support since I have joined the Authority.

My special appreciation and respect to **Dr. Waleid Mahmoud**, Lecturer of Chemistry, (NMA),for his assistance, support and great effort during this research, this thesis can't be finished without his sincere help and cooperation.

I would like to express my deepest appreciation and sincere gratitude to all people who helped me, supported me and encouraged me throughout this work. Finally, I would like to express my thanks to all friends in the Nuclear Materials Authority and my colleagues specially my best friend **Mariam Osama** who helped me and encourage me to complete this work.

CONTENTS

	Page
Acknowledgement	i
List of tables	iv
List of figures	vii
Abstract	viii
Chapter I : Introduction	
1.1. Biohydrometallurgy	1
1.2. Bioleaching Definition and mechanism	2
1.3. History of Biohydrometallurgy	4
1.4. Importance of Bioleaching	5
1.5. Bioleaching using fungi	6
1.6. Organic acids	8
1.7. Extraction of metal values by ion exchange	9
1.8. Location and geological background	11
1.9. Aim of work	14
1.10. Plan of work	14
Chapter II: Materials and Methods	
2.1. Materials	15
2.1.1. Ore sample	15
2.1.2. Microorganism	15
2.1.2.1. Medium of the isolates	15
2.1.3. Chemicals and Reagents	16
2.2. Methods	
2.2.1. Isolation of fungi strains from the ore sample	18

2.2.2. Purification and identification of fungi	19
2.2.3. Mineralogical composition of the ore Sample	20
2.2.4. Chemical Analysis of the ore sample	20
2.3. Factors affecting bioleaching process and solubilization of	21
some elements	
2.3.1. Effect of different ore amount	21
2.3.2. Effect of the shaking during the incubation period	22
2.3.3. Effect of different incubation temperature	23
2.3.4. Effect of solid / liquid ratio	23
2.3.5. Effect of different sugar concentration	24
2.3.6. Effect of addition of yeast extract	24
2.3.7. Effect of different initial pH values	25
2.3.8. Effect of different incubation periods	25
2.4. Identification of organic acids produced by fungi	26
2.5. Extraction of some metal values	26
2.5.1. Leach liquor preparation	27
2.5.1.1. Direct method (One step bioleaching method)	27
2.5.1.2. Indirect method (Two steps bioleaching method)	27
2.5.2. Leach liquor preparation by applying the optimum	29
conditions	
2.5.3. Extraction by anion exchange resin	29
2.5.3.1. Factors affecting extraction of Mo and U from	30
synthetic solutions	
I-Effect of shaking time	30
II-Effect of resin's volume/mixture solution volume	30
ratio (R/L)	
III-Effect of pH of the standard solution	31

2.5.3.1. Factors affecting extraction of Mo and U from the	31
prepared leach liquor	
I-Effect of pH of the leach liquors	31
2.4.3.2. Separation of molybdenum from uranium	32
2.4.4. Recovery of molybdenum, uranium and rare earth	32
elements	
Chapter III : Results and discussion	
3-1 Mineralogical composition of the ore sample	33
3-2 Chemical composition of ore sample	35
3-3 Fungi Identification	37
3-4 Bioleaching of metal values from the ore under study	40
3-4-1 Factors affecting bioleaching process and solubilization	40
of some elements	
3-4-1-1 Effect of different ore amount	41
3-4-1-2 Effect of shaking during the incubation period on	44
leaching efficiency	
3-4-1-3 Effect of different incubation temperature on	45
leaching efficiency	
3-4-1-4 Effect of solid/ liquid ratio on leaching efficiency	46
3-4-1-5 Effect of different sugar concentration on leaching	48
efficiency	
3-4-1-6 Effect of yeast extract addition on leaching	50
efficiency	
3-4-1-7 Effect of different initial pH values on leaching	51
efficiency	
3-4-1-8 Effect of different incubation periods on leaching	53
efficiency	

3-4-2 Uranium bioleaching	55
3-4-3 Identification of organic acids produced by fungi	59
3-4-3-1 Bioleaching of some metal values by the organic	61
acids	
3-4-4 Preparation of leach liquor for the subsequent extraction	66
process	
3-5 Extraction of metal values from leach liquor	69
3-5-1 Leaching experiments	70
3-5-2 Extraction process by ion exchange resin	71
3-5-3 Effect of shaking time upon loading U and Mo from	71
standard mixture	
3-5-4 Effect of resin's volume (wsr)/volume of mixture (R/L)	73
upon Mo and U leaching efficiency	
3-5-5 Effect of pH upon loading Mo and U from the standard	74
mixture	
3-6 Extraction of metal values from the prepared bioleach solution	75
3-6-1 Extraction of molybdenum and uranium	76
3-6-2 Molybdenum elution	78
3-6-3 Uranium elution	79
3-7 Recovery of REES	81
Summary and conclusion	83
References	88
Arabic summary	1

List of tables

Table		Page
Table (1)	Chemicals and reagents used in the experimental work	16
Table (2)	Different solid/liquid ratio for direct and indirect methods	28
Table (3)	XRD data for mineralogical composition	34
Table (4)	Major contents and trace elements concentration of the studied sample	36
Table (5)	Effect of different ore amount on leaching efficiency	43
Table (6)	Effect of shaking and without shaking during incubation period upon leaching efficiency	44
Table (7)	Effect of different incubation temperature on leaching efficiency	45
Table (8)	Effect of solid/liquid ratio on leaching efficiency	47
Table (9)	Effect of different sugar concentration on leaching efficiency	49
Table (10)	Effect of different yeast extract concentration on leaching efficiency	51
Table (11)	Effect of different initial pH values on leaching efficiency	52

Table		Page
Table (12)	Effect of different incubation periods on leaching efficiency	53
Table (13)	Factors affecting U leaching efficiency by Asp. <i>niger</i>	58
Table (14)	Organic acids concentration at different ore amount for 7 and 14 days incubation periods by Asp. <i>niger</i>	59
Table (15)	Organic acids concentration at different ore amount for 7 and 14 days incubation periods by Asp. <i>flavous</i>	60
Table (16)	Relative organic acids consumption with respect to control and bioleaching of elements from ore sample by Asp. <i>niger</i>	65
Table (17)	Relative organic acids consumption with respect to control and bioleaching of elements from ore sample by Asp. <i>flavous</i>	65
Table (18)	Effect of different solid/ liquid ratio by applying the direct method	67
Table (19)	Effect of different solid/ liquid ratio in the Indirect method	68
Table (20)	The XRD data of residue separated by the indirect bioleaching method of the ore under study.	69
Table (21)	Loading ability of purolite A 400 towards elements' standard solutions	70
Table (22)	Effect of shaking time upon the loading efficiencies of U and Mo	72

Table		Page
Table (23)	Effect of R/L ratio upon the loading efficiencies of U and Mo	73
Table (24)	Variation of pH values upon Mo and U loading efficiencies from the standard mixture solution	74
Table (25)	Effect of pH upon Mo and U loading efficiency	76
Table (26)	Effect of pH upon Mo and U loading efficiency by increasing resin amount (as wsr).	77