



## GREYWATER TREATMENT AND REUSE VIA DIFFERENT SIMPLE AND ADVANCED TECHNIQUES

By Ahmed Makki Jabbar Al-Sulaiman

### A Thesis Submitted to the

Faculty of Engineering at Cairo University In Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY In PUBLIC WORKS ENGINEERING

(SANITARY & ENVIROMENTAL ENGINEERING)

### FACULTY OF ENGINEERING, CAIRO UNIVERSITY

### GIZA, EGYPT

2014

## GREYWATER TREATMENT AND REUSE VIA DIFFERENT SIMPLE AND ADVANCED TECHNIQUES

By Ahmed Makki Jabbar Al-Sulaiman

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of The Requirements for the Degree DOCTOR OF PHILOSOPHY In PUBLIC WORKS ENGINEERING (SANITARY & ENVIROMENTAL ENGINEERING)

Under the supervision of

Prof. Dr. Hesham S. Abdel-Halim Prof. Dr. Hussein I. Abdel-Shafy

.....

Professor of Sanitary Public Work Department Faculty of Engineering, Cairo University

Professor Water Research & Pollution Control, National Research Centre (NRC), Cairo

#### FACULTY OF ENGINEERING, CAIRO UNIVERSITY

#### GIZA, EGYPT

2014

### GREYWATER TREATMENT AND REUSE VIA DIFFERENT SIMPLE AND ADVANCED TECHNIQUES

By Ahmed Makki Jabbar Al-Sulaiman

A Thesis Submitted to the

Faculty of Engineering at Cairo University In Partial Fulfillment of The Requirements for the Degree DOCTOR OF PHILOSOPHY

In

PUBLIC WORKS ENGINEERING (SANITARY & ENVIROMENTAL ENGINEERING)

Approved by the Examining Committee

Prof. Dr. Hesham S. Abdel-Halim, Thesis Main Advisor

Prof. Dr. Hussein I. Abdel-Shafy, Thesis Advisor Professor Water Research & Pollution Control, National Research Center (NCR)

Prof. Dr. Ehab Mohammed Rashed, Internal Examiner

Prof. Dr. Mohamed Saeed El-Khouly, External Examiner Professor of Environmental & Sanitary Engineering, Ain Shams University

#### FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

| Engineer:                 | Ahmed Makki Jabbar Al-Sulaiman |
|---------------------------|--------------------------------|
| Date of Birth:            | 4/1/1976                       |
| Nationality:              | Iraqi                          |
| E-mail:                   | ahmed_makki2002@yahoo.com      |
| Phone:                    | 00201141014341                 |
| Address:                  | Egypt - Giza                   |
| <b>Registration Date:</b> | 1/10/2010                      |
| Awarding Date:            | / /2014                        |
| Degree:                   | PhD. Engineering               |
|                           |                                |



**Department: Public Works Engineering (Sanitary and Environmental)** 

| Supervisors: | Prof. Dr. Hesham S. Abdel-Halim   |
|--------------|-----------------------------------|
|              | Prof. Dr. Hussein I. Abdel-Shafy  |
| Examiners:   | Prof. Dr. Mohamed Saeed El-Khouly |
|              | Prof. Dr. Ehab Mohammed Rashed    |
|              | Prof. Dr. Hesham S. Abdel-Halim   |
|              | Prof. Dr. Hussein I. Abdel-Shafy  |

#### **Title of Thesis:**

#### GREYWATER TREATMENT AND REUSE VIA DIFFERENT SIMPLE AND ADVANCED TECHNIQUES

**Key Words:** Greywater, Reuse, Effective microorganisms, Membrane bioreactor, Sequencing bioreactor, Up-flow anaerobic sludge blanket, Constructed wetland

#### **Summary:**

The present study deals with real GW that was collected from five flats and connected to a pilot plant, which was setup in NCR, Egypt, included sump tank, ST, AE, and CW. Three treatment systems were installed in this pilot plant namely, MBR, SBR, and UASB. Raw Greywater was subjected to two successive settling tanks. The effluent was divided into four streams. The first one was directed to the AE, the second one was directed to the CW, the third was directed to the MBR, and while the fourth was directed to the SBR. A pilot-scale of UASB followed by MBR unit was installed and operated in the NRC. Real raw greywater was subjected to UASB and the effluent was further treated with MBR. The objective of this study was to investigate different hybrid treatment processes for handling the GW for unrestricted water reuse. The viability and efficiency of sedimentation process at different times was examined. The viability and efficiency of sedimentation process followed by AE system, and CW system were also examined. Raw GW treatment was further evaluated employing chemical and biological coagulation followed by sedimentation processes. The chemical coagulation includes lime (CaO<sub>2</sub>) and lime aided with ferric chloride (FeCl<sub>3</sub>) as well as advanced oxidation as Fenton's reaction (Fe<sub>2</sub> (SO<sub>4</sub>)<sub>3</sub>.H<sub>2</sub>O<sub>2</sub>), serves as possible pretreatment to ensure a successful sedimentation process. The experimental method involves monitoring of specific water quality constituents, under varying operating conditions, at different sedimentation periods and different chemicals doses to reach the sustainable approach. GW treatment was examined first in batch experiments to determine the optimum operating conditions. The obtained optimum conditions were implemented throughout the pilot plant investigation. Additionally, EM was added to the sedimentation process to enhance the efficiency of treatment was also investigated. The effluent was further subjected to CW. The final effluent could cope with the Egyptian code for water reuse. Further study was carried out to investigate the efficiency of MBR and SBR separately for the treatment of raw GWr. The treated effluent exhibited efficient quality for unrestricted water reuse.

حِرَاللَّهِ ٱلرَّحْمَرُ ٱلرَّح ﴿رَبِّ أَوْزِعْنِي أَنْ أَشْكُرَ نِعْمَتَكَ الَّتِي أَنْعَمْتَ عَلَيَّ وَعَلَىٰ وَالدَيَّ وَأَنْ أَعْمَلَ صَالِحًا تَرْضَاهُ وَأَدْخِلْنِي بِرَحْمَتِكَ فِي عِبَادِكَ الصَّالِحِينَ ﴾ سورة النمل(19)

## <u>Acknowledgments</u>

First and foremost, I would like to owe my deepest gratitude, thankful and sincere acknowledgement goes to faculty of Engineering/ Qadisiyah University/Ministry of Higher Education and Scientific Research of Iraq, for the financial grantee, generous support, and the facilities provided for the present study

I would like to owe my deepest gratitude and thankful to **Dr.** Hussein I. Abdel-Shafy, Professor water pollution control, National Research Centre (NRC), Cairo, for his kind supervision, valuable advice, endless cooperation, helpful instruction, generous support, revising the thesis, interest in and concern about my progress.

My deepest thanks, heartfelt appreciation and endless gratitude to **Dr. Hesham S. Abdel-Halim**, Professor of sanitary Public work Department. Faculty of Engineering, Cairo University, for her trust, belief, and continuous help in my capabilities. This thesis would be incomplete without her indispensible remarks, kindness, continuous encouragement and support throughout all stage of this thesis.

I cannot get over my deep sense of gratitude and thankful to **Dr**. **Mona M. Galal El-Din,** Associated Professor Sanitary *L* Environmental, Faculty of Engineering, Cairo University, for his excellent technical advices and insightful comments. His positive criticism strengthened and helped me in all the time of research and writing of this thesis. Without his valuable support, I would have never able to produce such a work.

Finally, thanks must be extended to all staff members of the water pollution control in the National Research Center, and to all staff members of the Sanitary and Environmental Department in Faculty of Engineering, Cairo University for their endless support and ultimate help throughout the study.

## <u>Ahmed Makki Al-Sulaiman</u>

## <u>Dedication</u>

I dedicate this thesis to my wife **Rafel**, the exceptional people who have given me their unequivocal support throughout, as always, for which my mere expression of thanks likewise does not suffice.

I am heavily indebted to my loving **parents** for inundating me with their infinite love and care, raising me on the value of insistence and determination, educating me the sense of appreciation of learning, motivating me to chase my dreams, sacrificing their comfort to provide the perfect atmosphere for me to complete this work and praying for me to be a successful person.

To whom I am deeply grateful for their extreme support  $\mathcal{L}$  their indefinite patience.

I dedicate this work to my lovely kids (Taha & Aya)

# **Contents**

| Subject                                         | Page    |
|-------------------------------------------------|---------|
| AKNOWLEGEMENT                                   | I       |
| DEDICATION                                      | II      |
| TABLE OF CONTENTS                               | III     |
| LIST OF TABLES                                  | VIII    |
| LIST OF FIGURES                                 | XI      |
| LIST OF SYMBOLS AND ABBREVATIONS                | XIV     |
| ABSTRACT                                        | XV      |
| CHAPTER 1: INTRODUCTION                         | 1       |
| 1.1 INTRODUCTION                                | 1       |
| 1.2 DOMESTIC WASTEWATER SEPARATION              | 1       |
| 1.3 WHY SHOULD GREYWATER BE REUSED?             | 2       |
| 1.4 ADVANTAGES AND DISADVANTAGES OF GREYWATER I | REUSE 2 |
| 1.5 CASE STUDY                                  | 3       |
| 1.6 THE AIM OF THIS WORK                        | 6       |
| 1.7 THESIS STRUCTURE                            | 7       |
| CHAPTER 2: LITERATURE REVIEW                    |         |
| 2.1 INTRODUCTION                                | 8       |
| 2.2 GREYWATER CHARACTERISTICS                   | 8       |
| 2.2.1 PHYSICAL CHARACTERISTICS.                 | 10      |
| 2.2.2CHEMICAL CHARACTERISTICS                   | 10      |
| 2.2.3 MICROBIAL CHARACTERISTICS                 | 11      |
| 2.2.4GREYWATER QUANTITY                         |         |
| 2.3 GREYWATER SYSTEMS                           |         |
| 2.4 COMPONENTS OF GREYWATER TREATMENT SYSTEMS   |         |
| 2.4.1 PRIMARY TREATMENT                         |         |
| 2.4.2 SECONDARY TREATMENT                       | 14      |

|      | 2.4.3 DISINFECTION                                                       | 14  |
|------|--------------------------------------------------------------------------|-----|
| 2.55 | STANDARD DESIGN OF GREYWATER TREATMENT SYSTEMS                           | 14  |
|      | 2.5.1 DIFFERENT CASE STUDIES OF GREYWATER TREATMENT<br>AND REUSE SYSTEMS | 15  |
|      | 2.5.1.1 VERTICAL-FLOW FILTER                                             | 15  |
|      | 2.5.1.2 MULTI-STORY BUILDING                                             | 17  |
|      | 2.5.1.3 SEMI-URBAN AREAS                                                 | 20  |
|      | 2.5.1.4 SMALL BUILDING                                                   | 22  |
|      | 2.5.1.5 TREATMENT WITH MEMBRANE FILTRATION                               | 24  |
|      | 2.5.1.6 TREATMENT WITH CONSTRUCTED WETLAND                               | .27 |
|      | 2.5.2 APPLICATION RANGE AND QUALITY REQUIREMENTS FOR GREYWATER REUSE     | 31  |
|      | 2.5.2.1 TOILET FLUSHING                                                  | 31  |
|      | 2.5.2.2 LAUNDRY                                                          | 31  |
|      | 2.5.2.3 AGRICULTURAL REUSE                                               | .32 |
| 2.6  | EFFECTIVE MICROORGANISMS (EM)                                            | 33  |
|      | 2.6.1 INTRODUCTION                                                       | 33  |
|      | 2.6.2 DEFINITION OF EM.                                                  | 33  |
|      | 2.6.3 EM DISCOVERY                                                       | 34  |
|      | 2.6.4 USING EM                                                           | 34  |
|      | 2.6.5 COMPONENTS OF EM.                                                  | 35  |
|      | 2.6.6 EM PRODUCTS                                                        | 36  |
|      | 2.6.7 ACTIVATION AND APPLICATION OF EM                                   | 37  |
|      | 2.6.7.1 EM-1 MICROBIAL INOCULANT                                         | 37  |
|      | 2.6.7.2 EM-1 WASTE TREATMENT                                             | 37  |
|      | 2.6.7.3 EM-1 SEPTIC TREATMENT                                            | .38 |
|      | 2.6.8 APPLICATION OF EM IN WASTEWATER TREATMENT                          | .38 |
|      | 2.6.8.1 SOLAR AQUATIC FACILITY APPLICATION                               | 38  |
|      | 2.6.8.2 SEPTIC TANK APPLICATIONS                                         | 39  |

| CHAPTER 3: EXPERIMENTAL WORK                                                     |            |
|----------------------------------------------------------------------------------|------------|
| 3.1 SOURCE OF RAW GREYWATER                                                      |            |
| 3.2 EQUIPMENT OF PILOT PLANT                                                     |            |
| 3.2.1 SUMP TANK                                                                  |            |
| 3.2.2 INLET AND OUTLET PIPE                                                      |            |
| 3.2.3 COLLECTION TANK                                                            |            |
| 3.2.4 SEDIMENTATION TANK                                                         |            |
| 3.2.5 HYBRID AERATION TANK                                                       |            |
| 3.2.6 SEQUENCING BATCH REACTOR (SBR)                                             |            |
| 3.2.7 MEMBRANE BIOREACTOR (MBR)                                                  |            |
| 3.2.8 CONSTRUCTED WETLAND (CW)                                                   |            |
| 3.2.8.1 THE VASCULAR PLANTS FOR THE CON WETLANDS.                                | STRUCTED   |
| 3.2.8.2 SUBSTRATE FOR CW                                                         |            |
| 3.2.8.3 CONSTRUCTED WETLAND UNITS                                                |            |
| 3.2.8.4 CALCULATIONS OF HYDRAULIC RETENTION T<br>AND ORGANIC LOADING RATE (OLR). | 'IME (HRT) |
| 3.2.9 UP-FLOW ANAEROBIC SLUDGE BLANKET (UASB)                                    |            |
| 3.3 SAMPLING COLLECTIONS AND LOCATIONS                                           |            |
| 3.4 ANALYTICAL AND MEASURMENT                                                    |            |
| 3.4.1 TEMPERATURE                                                                |            |
| 3.4.2 PH VALUE                                                                   |            |
| 3.4.3 ELECTRICAL CONDUCTIVITY (EC)                                               |            |
| 3.4.4 TOTAL SUSPENDED SOLIDS (TSS)                                               |            |
| 3.4.5 CHEMICAL OXYGEN DEMAND (COD)                                               |            |
| 3.4.6 BIOLOGICAL OXYGEN DEMAND (BOD <sub>5</sub> )                               | 59         |
| 3.4.7 OIL AND GREASE                                                             | 60         |
| 3.4.8 TOTAL PHOSPHATE (TP)                                                       | 60         |
| 3.4.9 NITRATE (NO <sub>3</sub> )                                                 | 60         |

| 3.4.10 DISSOLVED OXYGEN METER (DO)                                                                  |
|-----------------------------------------------------------------------------------------------------|
| 3.5 PROCEDURE OF THE WORK                                                                           |
| 3.6 MATERIALS AND OPERATION CONDITION                                                               |
| 3.6.1 BENCH SCALE INVESTIGATION                                                                     |
| 3.6.1.1 PREPARATION AND LIMITATION OF EM DOSE                                                       |
| 3.6.1.2 LIMITATION OF CHEMICAL COAGULATION DOSE FROM<br>LIME AND FERRIC CHLORIDE                    |
| 3.6.1.3 LIMITATION OF ADVANCED OXIDATION DOSE FROM FENTON'S                                         |
| 3.6.2 CONTINUOUS FLOW EXPERIMENT                                                                    |
| CHAPTER 4: RESULTS AND DISCUSSION                                                                   |
| 4.1 INTRODUCTION                                                                                    |
| 4.2 PHYSICAL AND CHEMICAL CHARACTERISTICS OF RAW GREYWATER                                          |
| 4.3 EXPERIMENTAL WORK FOR BATCH REACTOR                                                             |
| 4.3.1 DETERMINATION OF THE OPTIMUM DETENTION TIME FOR SEDIMENTATION TANK FOLLOWED BY AERTION TANK   |
| 4.3.2 DETERMINATION OF EM OPTIMUM DOSE                                                              |
| 4.3.2.1 THE EFFECT OF ADDING NORMAL-EM DOSES BEFORE<br>SEDIMENTATION TANK                           |
| 4.3.2.2 THE EFFECT OF ADDING AERATED-EM AND NON-AERATED<br>EM DOSES BEFORE/AFTER SEDIMENTATION TANK |
| 4.3.3 DETERMINATION OF CHEMICAL OPTIMUM DOSE FROM LIME<br>AND FERRIC CHLORIDE                       |
| 4.3.4 DETERMINATION OF ADVANCED OXIDATION OPTIMUM DOSE<br>FROM FENTON'S90                           |
| 4.4 PILOT PLANT CONTINUOUS SYSTEM                                                                   |
| 4.4.1 TRAIN ONE: PHYSICAL PROCESS FOLLOWED BY<br>BIOLOGICAL PROCESS                                 |
| 4.4.1.1 SETTLING OF RAW GREYWATER FOR 3.0 AND 4.5<br>HR WITHOUT ANY CHEMICAL ADDITION               |

| 4.4.1.2 SETTLING OF RAW GREYWATER FOR 3.0 AND 4.5<br>HR WITH A LIME ADDITION AS COAGULANT                                      |
|--------------------------------------------------------------------------------------------------------------------------------|
| 4.4.1.3 EFFECT OF ADDING LIME IN COMBINATION WITH<br>FERRIC CHLORIDE AS COAGULANTS TO SEDIMENTATION TANK<br>FOR 3.0 AND 4.5 HR |
| 4.4.1.4 EFFECT OF ADDING NORMAL-EM TO<br>SEDIMENTATION TANK FOR 3.0 AND 4.5 HR 102                                             |
| 4.4.1.5 COMPARISON BETWEEN FOUR CASES TO REACH<br>THE OPTIMUM TREATED GREYWATER PROCESS 105                                    |
| 4.4.2 TRAIN TWO: PHYSICAL PROCESS FOLLOWED BY MBR 110                                                                          |
| 4.4.3 TRAIN THREE: PHYSICAL PROCESS FOLLOWED SBR 112                                                                           |
| 4.4.4 TRAIN FOUR: PHYSICAL PROCESS FOLLOWED CW UNIT 114                                                                        |
| 4.4.4.1 SETTLING OF RAW GREYWATER FOR 3.0 AND 4.5<br>HR WITHOUT ANY CHEMICAL ADDITION114                                       |
| 4.4.4.2 SETTLING OF RAW GREYWATER FOR 3.0 AND 4.5<br>HR WITH A LIME ADDITION AS COAGULANT117                                   |
| 4.4.4.3 EFFECT OF ADDING LIME IN COMBINATION WITH<br>FERRIC CHLORIDE AS COAGULANTS TO SEDIMENTATION TANK<br>FOR 3.0 AND 4.5 HR |
| 4.4.4.4 EFFECT OF ADDING NORMAL-EM TO<br>SEDIMENTATION TANK FOR 3.0 AND 4.5 HR                                                 |
| 4.4.4.5 COMPARISON BETWEEN FOUR CASES TO REACH<br>THE OPTIMUM TREATED GREYWATER PROCESS                                        |
| 4.4.5 TRAIN FIVE: UP-FLOW ANAEROBIC SLUDGE BLANKET<br>(UASB) REACTOR FOLLOWED BY MBR UNIT                                      |
| 4.5 COMPARISON BETWEEN FIVE TRAINS TO REACH THE<br>OPTIMUM TREATED GREYWATER PROCESS                                           |
| CHAPTER 5: CONCLUSION AND RECOMMENDATION 135                                                                                   |
| 5.1 INTRODUCTION                                                                                                               |
| 5.2 CONCLUSIONS                                                                                                                |
| 5.3 RECOMMENDATIONS                                                                                                            |
| REFERENCES 141                                                                                                                 |
| APPENDICES                                                                                                                     |

| LIST OF APPENDICES TABLES |     |
|---------------------------|-----|
| APPENDIX A                |     |
| APPENDIX B                | 173 |
| APPENDIX C                | 178 |
| APPENDIX D                |     |

# List of Tables

| Table No.                                                                                                            | Page          |
|----------------------------------------------------------------------------------------------------------------------|---------------|
| Table 2.1: Components of the greywater untreated                                                                     | 9             |
| Table 2.2: Characteristics of greywater                                                                              | 9             |
| Table 2.3: Water quality requirements for toilet flushing and Laundry                                                | 32            |
| Table 2.4: Summary of Water Quality Parameters of Concern for Water Re                                               | euse 33       |
| Table 2.5: products (EM)                                                                                             | 37            |
| Table 2.6: Testing methods used for analysis of septic tank samples                                                  | 39            |
| Table 3.1: the parameters used in sedimentation tank                                                                 | 44            |
| Table 3.2: Specifications of SBR unit                                                                                | 48            |
| Table 3.3: Specifications of MBR unit                                                                                | 49            |
| Table 3.4: Specifications of small MBR unit                                                                          | 50            |
| Table 3.5: Dimensiona and operating conditions of constructed wetland for                                            | -             |
| greywater                                                                                                            | 54            |
| Table 3.6: Dimensions and operating conditions of the UASB for GW                                                    | 55            |
| Table 4.1: Characteristics of raw greywater                                                                          | 70            |
| Table 4.2: Permissible limits of water reuse for irrigation according to the                                         |               |
| Egyptian Guideline                                                                                                   | 71            |
| Table 4.3: Effect of different settling time on the characteristices of raw GW                                       | V 72          |
| Table 4.4: Effect of aeration at different times on the characteristic of grey (pre-treatment by settling for 1.5 h) | water<br>76   |
| Table 4.5: Effect of aeration at different times on the characteristic of grev                                       | water         |
| (pre-treatment by settling for 3.0 h)                                                                                |               |
| Table 4.6: Effect of aeration at different times on the characteristic of grey                                       | water         |
| (pre-treatment by settling for 4.5 h)                                                                                |               |
| Table 4.7: Effect of Normal-EM doses at different doses before sedimentat   tank on the treatment of GW              | ion<br>82     |
| Table 4.8: Effect of Aerated-EM doses at different doses before sedimentation                                        | tion          |
| tank on the treatment of GW                                                                                          | 83            |
| Table 4.9: Effect of Aerated-EM doses at different doses after sedimentation   on the treatment of GW                | on tank<br>84 |
| Table 4.10: Effect of Non-aerated EM doses at different doses before sedimentation tank on the treatment of GW       | 85            |
| Table 4.11: Effect of addition lime doses at different doses on the treatmen                                         | 05            |
| efficiency of characteristics GW                                                                                     | 87            |
| Table 4.12: Effect of addition lime 160 mg/L with ferric chloride doses on                                           | the           |
| treatment efficiency of characteristics raw greywater                                                                | 89            |
| VIII                                                                                                                 |               |

| Table 4.13: Bench-scale study on the effect of H2O2 dose on the treatment of rawGW at constant ferrous sulfate dose 130 mg/L91                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 4.14: Bench-scale study on the effect of ferrous sulfate dose on thetreatment of raw GW at constant H2O2 dose 100 mg/L91                                                                                                                          |
| Table 4.15: the average characteristics of greywater after treatment with settlingfor 3 hour followed by aeration process without any chemical additional (firstcase)                                                                                   |
| Table 4.16: the average characteristics of greywater after treatment with settlingfor 4.5 hour followed by aeration process without any chemical additional (firstcase)                                                                                 |
| Table 4.17: the average characteristics of greywater after chemical coagulationtreatment with lime dose about 160 mg/L in settling for 3.0 hour followed byaeration process (second case)                                                               |
| Table 4.18: c the average characteristics of greywater after chemical coagulationtreatment with lime dose about 160 mg/L in settling for 4.5 hour followed byaeration process (second case)                                                             |
| Table 4.19: the average characteristics of greywater after chemical coagulation treatment with lime dose about 160 mg/L in combination with ferric chloride dose about 100 mg/L in settling time for 3.0 hour followed by aeration process (third case) |
| Table 4.20: the average characteristics of greywater after chemical coagulation treatment with lime dose about 160 mg/L in combination with ferric chloride dose about 100 mg/L in settling time for 4.5 hour (third case)                              |
| Table 4.21: the average characteristics of greywater after effective microorganisms (EM) treatment about 1.2 ml/L in settling time for 3.0 hour followed by aeration process (fourth case)                                                              |
| Table 4.22: the average characteristics of greywater after effective microorganisms (EM) treatment about 1.5 ml/L in settling time for 4.5 hour followed by aeration process (fourth case)                                                              |
| Table a (4.23): the average characteristics of influent and effluent greywater aftersettling time for 3.0 hour (four cases)106                                                                                                                          |
| Table b (4.23): the average characteristics of influent and effluent greywater aftersettling time for 4.5 hour (four cases)107                                                                                                                          |
| Table a (4.24): the average characteristics of influent and effluent greywater after settling time for 3.0 hour followed by aerating time 90 minutes (four cases) 108                                                                                   |
| Table b (4.24): the average characteristics of influent and effluent greywater after settling time for 4.5 hour followed by aerating time 90 minutes (four cases) 109                                                                                   |
| Table 4.25: the average characteristics of influent and effluent greywater after   settling time for 3.0 hour followed by MBR for train two                                                                                                             |