Effects of bariatric surgery (Sleeve Gastrectomy) on serum visfatin level and insulin resistance in obese diabetic and obese non diabetic cases

Thesis

Submitted for Partial Fulfillment of M.D Degree in Endocrinology and metabolism

By

Gena Mahmoud Ali El Makromy

M.Sc. in Endocrinology and metabolism

Supervised By

Prof. Dr. Nihad Shoukry Mohamed Shoeib

Professor of Internal Medicine and Endocrinology Faculty of Medicine, Ain Shams University

Prof. Dr. Khaled Mahmoud Makboul

Professor of Internal Medicine and Endocrinology Faculty of Medicine, Ain Shams University

Dr. Mohamed Mahmoud Abouzeid

Assistant Professor of General Surgery Faculty of Medicine, Ain Shams University

Dr. Ahmed Mohamed Bahaa El Dien

Lecturer of Internal Medicine and Endocrinology Faculty of Medicine, Ain Shams University

Dr. Caroline Adel Girgis

Lecturer of Internal Medicine and Endocrinology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2017

Thanks and for most thanks to **ALLAH**, the merciful of all, who helped me for accomplishment of this work.

No words can express my deepest appreciation and profound respect to **Prof. Dr. Nihad Shoukry Mohamed Shoeib,** Professor of Internal Medicine and Endocrinology, Ain Shams University, for her continuous guidance and support. She has generously devoted much of her time and her effort for planning and supervision of this study.

Also, my profound gratitude to **Prof. Dr. Khaled Mahmoud Makboul,** Professor of Internal Medicine and Endocrinology, Ain Shams University, for his kind supervision and support. It was great honor to work under his supervision.

I would like also to thank **Dr. Mohamed Mahmoud Abouzeid,** Assistant Professor of General Surgery, Ain Shams University, for his support, help and constructive criticism during this work.

I would like also to thank **Dr. Ahmed Mohamed Bahaa El Dien,** Lecturer of Internal Medicine and Endocrinology Ain Shams University, for his support and help during this work.

Also, my profound gratitude to **Dr. Caroline Adel Girgis,** Lecturer of Internal Medicine and Endocrinology, Ain Shams University, for her great care and support. I would like also to express my sincere appreciation and gratitude to **Dr. Doaa Zakaria Zaky**, Assistant Professor of Tropical Medicine, Ain Shams University, **Dr. Nader Makram Milad**, Assistant Professor of General Surgery, Cairo University and **Dr. Menat Allah Ali Shaaban**, Lecturer of Clinical Pathology, Ain Shams University for helping me to complete this work.

Last but not least, I dedicate this work to **my parents**, **my Husband** and **my Sons** whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Tist of Contents

Subject	Page No.
List of Abbreviations	I
List of Tables	v
List of Figures	VII
Introduction	1
Aim of the Work	3
Review of Literature	
Chapter (1): Obesity	4
Chapter (2): Bariatric Surgery	42
Chapter (3): Diabetes Mellitus	91
Chapter (4): Visfatin	
Patients and Methods	150
Results	
Discussion	
Summary	224
Conclusion	229
Recommendations	230
References	231
Arabic Summary	

List of Abbreviations

Abb.	Full term
ADA	American Diabetes Association
AHA	American Heart Assotiation
AHI	Apnea Hypopnea Index
AIDS	Acquired immune deficiency syndrome
ALI	Acute lung Injury
ALT	Alanine aminotransferase
AST	Aspartate aminotransferase
BMI	Body mass index
BPD	Biliopancreatic diversion
BPD DS	Biliopancreatic diversion with duodenal switch
CAD	Coronary artery disease
ССК	Cholecystokinin
CHD	Coronary heart disease
Chol	Cholesterol
CKD	Chronic kidney disease
CNS	Central Nervous System
СТ	Computerized Axial tomography
CVD	Cardio vascular disease
DJBS	Duodenal-Jejunal bypass sleeve
DM	Diabetes Mellitus
EBWL	Excess body weight loss
ELISA	Enzyme liked Immunoassay
EWL	Excess weight loss
FFAs	Free fatty acids
FPG	Fasting plasma glucose
GAD	Glutamic acid decaroxylase
GDM	Gestational diabetes

🛎 List of Abbreviations 📚

Abb.	Full term
GERD	Gastroesophageal Reflux Disease
GF	Growth factor
GFR	Glomerular filtration rate
GH	Growth hormone
GIP	Gastric inhibitory polypeptide
GLP-1	Glucagon-like peptide 1
GLUT	Glucose transporters
HAART	Highly Active Antiviral Therapy
HbAIc	Hemoglobin AIc
HDL	High density lipoprotein
HIF-1	Hypoxia inducible factor-1
HNF1A	Hepatocyte nuclear factor 1 alpha
НОМА	Homeostasis model assessment
HOMA-IR	Homeostasis model assessment of insulin resistance
IAA	Insulin antibodies
ICA	Islet cell cytoplasm antibodies
IFG	Impaired fasting glucose.
IGS	Implantable gastric stimulator
IGT	Impaired glucose tolerance
IL	Interleukin
IPF	Insulin promoter factor
IR	Insulin Resistance
IRS	Insulin receptor Substrate
LADA	Latent autoimmune diabetes in adults
LAGB	Laparoscopic adjustable gastric banding
LDH	Lactate dehydrogenase
LDL	Low density lipoprotein
LES	Lower esophageal sphincter
LSG	Laparoscopic sleeve gastrectomy

≥ List of Abbreviations 🕃

Abb.	Full term
MCP-1	Monocyte chemoattractant protein 1
MODY	Maturity onset diabetes of the young
NADH	Reduced β -nicotinamide adenine dinucleotide
NAFLD	Non Alcoholic fatty liver disease
Nampt	Nicotine amide phosphoribosyl transferase
NASH	Non alcoholic steatohepatitts
NGF	Nerve growth factor
NIDDM	Non insulin dependent diabetes mellitus
NIH	National Institutes of Health
Ob	Obese gene
OGTT	Oral glucose tolerance test
OSA	Obstructive Sleep Apnea
PAI-l	Plasminogen activator inhibitor type-1
PAPR	Peroxisome Proliferators Activator Receptor
PBEF	Pre Beta Colony Enhancing Factor
PCOS	Polycystic ovary syndrome
PI	Phosphatidylinositol
QUICKI	Quantitative insulin sensitivity check index
RBP-4	Retinol-binding protein-4
RCT	Randamized Control Trial
RIA	Radioimmunoassay
RNS	Reactive Nitrogen Species
ROS	Reactive oxygen species
RYGB	Roux-en-Y-Gastric bypass
SC	Subcutaneous
SFT	Skin fold thickness
SOS	Swedish Obese Subjects
SPARC	Secreted protein acidic and rich in cysteine
TCF7L2	Transcription factor 7-like 2

≥ List of Abbreviations 📚

Abb.	Full term
TGs	Triglycerides
THP-1	Human acute monocytic leukemia cell line
TNF-α	Tumor necrosis factor alpha
TZDS	Thiazolidinediones
Vaspin	Visceral adipose tissue-derived serpin
VAT	Visceral adipose tissue
VBG	Vertical banded gastroplasty
VF	Visfatin
VTE	Venous thromboembolism
WAT	White adipose tissues
WC	Waist circumference
WHO	World Health Organization
WHR	Waist hip ratio

List of Tables

Table	Title	Page
	Table of Review	
1	Diagnostic criteria for diabetes mellitus and related stages of hyperglycemia	118
	Table of Results	
1	Comparison between groups as regard baseline demographic and anthropometric data	183
2	Comparison between groups as regard baseline Lipid Profile	184
3	Comparison between groups as regard baseline blood sugar control parameters	185
4	Comparison between groups as regard baseline Visfatin level	189
5	Correlations between baseline Visfatin level and other baseline clinical and laboratory parameters in all patients and after subgroup analysis	190
6	Comparison of clinical parameters before and after operation in subgroups divided by history of DM	191
7	Comparison of laboratory parameters before and after operation in subgroups divided by history of DM	194
8	Comparison between groups as regard degree of change of clinical parameters	199
9	Comparison between groups as regard degree of change of blood sugar control parameters	202

🛎 List of Tables 📚

Table	Title	Page
10	Comparison between groups as regard degree of change of Visfatin level	205
11	Correlations between percent of Visfatin reduction from baseline and percent reduction of other clinical and laboratory parameters	206

List of Figures

Figure	Title	Page
	Figure of Review	
1	Sleeve gastrectomy	47
2	Vertical banded gastroplasty	52
3	Adjustable gastric banding	54
4	Bilio-pancreatic diversion	57
5	Roux-en-Y gastric bypass	61
6	CT scan image showing a small locule of extraluminal gas adjacent to the gastrojejunal anastomosis	79
7	Laparascopy showing an abscess cavity adjacent to the gastrojejunostomy	80
8	Potential mesenteric opening that could lead to internal hernia after Roux-en-Y gastric bypass	81
9	Elevations of circulating glucose initiate a vicious circle in which hyperglycemia begets more severe hyperglycemia	103
10	Hyperglycemia	108
	Figure of Results	
1	Bar chart comparing groups as regard age	183
2	Box and whisker-plot chart showing comparison between groups as regard TGs level	184
3	Bar chart comparing groups as regard FBS	185
4	Box and whisker-plot chart showing comparison between groups as regard fasting insulin level	186

🛎 List of Figures 📚

Figure	Title	Page
5	Box and whisker-plot chart showing comparison between groups as regard H0MA-IR level	187
6	Box and whisker-plot chart showing comparison between groups as regard HBA1C (%)	188
7	Box and whisker-plot chart showing comparison between groups as regard Visfatin level	189
8	Bar chart comparing groups as regard weight	191
9	Bar chart comparing groups as regard BMI	192
10	Bar chart comparing groups as regard waist circumference	192
11	Bar chart comparing groups as regard waist / hip ratio	193
12	Bar chart comparing groups as regard skin fold thickness	193
13	Bar chart comparing groups as regard fasting glucose level	194
14	Box and whisker-plot chart showing comparison between groups as regard fasting insulin level	195
15	Box and whisker-plot chart showing comparison between groups as regard HOMA-IR	196
16	Box and whisker-plot chart showing comparison between groups as regardHBA1C (%)	197

🛎 List of Figures 📚

Figure	Title	Page
17	Box and whisker-plot chart showing comparison between groups as regard visfatin level	198
18	Bar chart comparing groups as regard degree of change of weight	199
19	Bar chart comparing groups as regard degree of change of BMI	200
20	Box and whisker-plot chart showing comparison between groups as regard degree of change of waist circumference	200
21	Box and whisker-plot chart showing comparison between groups as regard degree of change of WHR	201
22	Bar chart comparing groups as regard degree of change of FBS	202
23	Bar chart comparing groups as regard degree of change of HBA1C (%)	203
24	Box and whisker-plot chart showing comparison between groups as regard degree of change of fasting insulin	203
25	Box and whisker-plot chart showing comparison between groups as regard degree of change of HOMA-IR	204
26	Bar chart comparing groups as regard degree of change of visfatin level	205
27	Scatter plot showing correlation between Visfatin level reduction ratio and fasting blood sugar reduction ratio in all patients	207

Introduction

Adipose tissue, apart from its classical role as an energy storage depot, is also a major endocrine organ that secretes many biologically active factors, whose local and circulating levels are affected by the degree of adiposity *(Terra et al., 2013)*.

In obese individuals. adipose tissue releases increased amounts of hormones, pro-inflammatory cytokines and other factors that are involved in the development of insulin resistance which is accompanied by dysfunction of pancreatic islet β -cells with failure to control blood glucose levels increasing the risk and development of type 2 diabetes (Khan et al., 2006).

Visfatin is a recent described adipokine that is highly expressed in visceral fat and localized to the blood stream and has various functions, including the activation of insulin receptor and has insulin mimetic effects, lowering blood glucose and improving insulin sensitivity (*Rongvaux et al., 2010*).

Bariatric surgery is an effective treatment for obesity (*Magee et al., 2011*). Patients tend to lose weight rapidly after surgery, with a negative energy balance in the first few weeks (*Czupryniak et al., 2007*).

¹

Laparoscopic Sleeve Gastrectomy is a technically less complex surgical procedure which is promising for the treatment of obesity and type 2 Diabetes Mellitus (*Zimmet and Alberti, 2012*).

Increased plasma visfatin levels after weight loss surgeries indicate a role for visfatin in improved insulin sensitivity (*Botella et al., 2008*), yet in 2013 *Hosseinzadeh and coworkers* reported a decrease in serum visfatin levels after bariatric surgery induced weight reduction with no significant correlation between changes of visfatin, BMI, waist circumference, and insulin resistance and suggested Further studies to clarify these associations.