
Al-Azhar University,

Faculty of Science (Girls),

Department of Mathematics.

Improvement of Formal Methods Approach Using Pattern

Perspective in Real Time System Applications

A thesis submitted for

Ph.D. Degree

in

Computer Science

by

Enas El-Sayed Mohamed El-Sharawy

 Department of Mathematics, Faculty of Science (Girls),

Al-Azhar University.

Under Supervision of:

Prof. Dr.

Ahmed Kamel El-Khouly

Al-Azhar University,

Faculty of Science (Girls),

Department of Mathematics,

(Mathematics section)

Prof. Dr.

 Gaber Ahmed El-Sharawy

 Al-Azhar University,

Faculty of Science (Girls),

 Department of Mathematics,

(Computer science section)

Dr.

Eman Karam El-Sayed

Al-Azhar University,

Faculty of Science (Girls),

Department of Mathematics,

(Computer science section)

Cairo, 2014

ACKNOWLEDGEMENT

Prayerful thanks, at first to our Merciful God who gives me everything

I have.

I wish to express my sincere gratitude and deepest thanks to Prof.

Dr.A.K El-kholy and G.A. El Sharawy, for their active supervision, and

constructive criticism during the progress of this thesis.

I'm greatly indebted to Dr. Eman Karam El-Sayed for providing me

most of the Guidance needed for the completion of this work.

My thanks also go to the Department of Mathematics and faculty

members; for their help and support.

My vocabulary utterly fails in expressing my accolade to my revered

parents who brought me to this stage. I fall short of words for the moral

support extended by them. I also gratefully acknowledge the help and moral

support rendered by all family members for perusing further studies.

My thanks also extended to my husband and my sweet daughter, for

their continuous encouragement, their patience, interest and helpful

cooperation which made this investigation possible.

Thank giving is not merely a customary word; I realize that it is of

immense significance too.

Grateful and indebted

(Enas El-Sharawy)

Abstract

The systematic approach (formal method) is a correct valid path to

convert software requirement to executable code. Each Formal Method

with Proofs FMP have theorem behind it as B theorem with Event-B

formal method. By formal method we can build large computerized

complex systems. That is by three techniques: refinement, decomposition

and generic instantiation. In this thesis, we integrate refinement and

generic instantiation techniques in Event-B formal method. Practically, we

used RODIN platform and its database tools of the Static Checker, the

Proof Obligation Generator, the Prover and the Translator from B model

to a programming language.

The main aim of this work is rising the degree of automation and

increasing efficiency of theorem proving technique to decrease the cost of

such developments depends directly on them. And also increase

correctness and validation degree. All of them with stable reusability. So

we propose using automatic theorem provers known as SMT-solvers with

Event-B pattern. The benefit of this approach is to have strong validation

pattern. This approach enhances the pattern reusability with high degree of

automatic proving and low effort. Then, we propose a new refinement of

ATM UML model by agentless data collection approach and convert it to

be Event-B pattern. That convert is more suitable for mathematician. That

convert reduce the proof obligation.

Finally, we discuss a logical correct path to translate Event-B

pattern to C# language code. That is for both models and algorithms.

Keywords: Formal method, Event-B, Proof Obligations, UML-B Pattern,

Event-B Pattern, ATM model, SMT-Solver, agentless data collection

approach, Code Generation.

I

Contents

page Subject

CHAPTER 1: INTRODUCTION
1 1.1Introduction

2 1.2 Thesis Motivation and Contribution

4 1.3 Outcomes and Thesis Organization

CHAPTER 2: FORMAL METHODS
8 2.1 Introduction

9 2.2 Overview of Modeling

10 2.3 Definition of Formal Methods

12 2.4 Refinement Approach

13 2.5 Formal Method language

13 2.5.1 VDM

14 2.5.2 Z method

15 2.5.3 B-Method

15 2.5.4 CSP Language

16 2.5.5 Action Systems

17 2.5.6 Ontology

17 2.5.7 Event-B Language

18 2.6 A Comparison between Formal Method Languages

Chapter 3: The Event-B Modeling Notation and Proof

Obligation Rules
19 3.1 Introduction

20 3.2 Event-B components: Machines and Contexts

21 3.2.1 Machine and context relationships

23 3.2.2 Context structure

24 3.2.3 Context example

25 3.2.4 Machine Structure

27 3.2.5 Machine Example

28 3.2.6 Events

29 3.2.7 Actions

31 3.2.8 Examples of events

34 3.3 Machine Refinement in Event-B

36 3.4 Proof Obligation Rules

36 3.4.1 Introduction

37 3.4.2 Invariant Preservation Proof Obligation Rule: INV

II

page Subject

39 3.4.3 Feasibility Proof Obligation Rule: FIS

41 3.4.4 Guard Strengthening Proof Obligation Rule: GRD

42 3.4.5 The guard merging proof obligation rule: MRG

43 3.4.6 Simulation proof obligation rule: SIM

45 3.4.7 The Numeric Variant Proof Obligation Rule: NAT

45 3.4.8 The Finite Set Variant Proof Obligation Rule: FIN

46 3.4.9 The variant proof obligation rule: VAR

49 3.4.10 The Non-Deterministic Witness Proof Obligation Rule: WFIS

50 3.4.11 The Theorem Proof Obligation Rule: THM

50 3.4.12 The Well-Definedness Proof Obligation Rule: WD

Chapter 4: Integration of Automatic Theorem Provers in

Event-B Patterns
51 4.1 Introduction

52 4.2 Design Pattern

54 4.3 Satisfiability Modulo Theory (SMT)

55 4.4 Related Works

56 4.5 The Proposal Approach

56 4.6 CASE STUDIES

56 4.6.1 Overview of a Binary Search

67 4.6.2 Overview of Minimum Algorithm

70 4.7 Result Analysis

Chapter 5 : The Refinement Validation of ATM Model By

Using UML-B
79 5.1 Introduction

80 5.2 Overview

80 5. 2.1 UML-B Background

83 5.2.2 Refinement Approach in UML-B

83 5.2.3 Agentless Data Collection Validation

84 5.2.4 ATM System

85 5.3 Literature Review

86 5.4 The Proposal Approach

88 5.5 ATM Case Study

97 5.6 System Generalization

98 5.6.1 Question/Response protocol : Initial Model Event-B

99 5.6.2 Question/Response protocol First Refinement Event-B

100 5.6.3 Pattern Similarity of Protocol

101 5.6. Result analysis

III

page Subject

Chapter 6 : Event-B Pattern to High Quality Automatic

Implementation
105 6.1 Introduction

107 6.2 Translation Philosophy

109 6.3 Generation Phases

109 6.3.1 The Rewrite Phase

111 6.3.2 The Translation Phase

115 6.3.3 The Build Phase

116 6.4 Case Studies

116 6.4.1 Automatic C# Code Generation from Minimum Search

Algorithm

119 6.4.2 Automatic C# Code Generation from ATM Pattern Model

122 6.5 Result Analysis

125 Chapter 7 : CONCLUSION AND FURTHER WORK

127 Publications
128 REFERENCES

ARABIC SUMMARY

LIST OF FIGURES

page Figure No.

20 Figure 3.1 Machine And Context Component

21 Figure 3.2. Machine And Context Relationship

22 Figure 3.3 Examples of correct visibilities

24 Figure 3.4 Context structure

25 Figure 3.5 Context example

25 Figure 3.6. Context example (one per clause)

26 Figure 3.7 Machine structure

27 Figure 3.8 Machine example

27 Figure 3.9 Machine example as presented in this thesis

28 Figure 3.10. Event structure

31 Figure 3.11(a) Events associated with machine m_0a

32 Figure 3.11(b) Another machine m_0b

33 Figure 3.11(c) Machine m_1a refines machine m_0a

33 Figure 3.11(d) Machine m_1b refines machine m_0b

34 Figure 3.12 abstract event ea and concrete event ec

35 Figure 3.13 (a) Proof Obligation of feasible concrete event

35 Figure 3.13 (b) Proof Obligation of the guard of event ea

35 Figure 3.13 (c) Proof Obligation of the guard of event ec

36 Figure 3.14 Event assumption

37 Figure 3.15 Event assumption for rule INV

37 Figure 3.16 Rule of proof obligations that called evt/inv/INV

38 Figure 3.17 (a) Example of simplification of PO “initialization / inv1 / INV :”

38 Figure 3.17 (b) Example of simplification of PO “search / inv1 / INV

39 Figure 3.18 Event refinement assumption

39 Figure 3.19 Rule of proof obligations of refined invariant

40 Figure 3.20 Event assumption for rule FIS

40 Figure 3.21 Rule of proof obligations that called evt/act/FIS

40 Figure 3.22 Example of evt/act/FIS PO .

41 Figure 3.23 Event assumption for ruler GRD.

41 Figure 3.24 Rule of proof obligations that called evt/grd/GRD

42 Figure 3.25 Example of evt/grd/GRD PO .

42 Figure 3.26 Event assumptions for rule MRG

43 Figure 3.27 Rule of proof obligations that called evt/MRG

43 Figure 3.28 Event assumptions for rule SIM

44 Figure 3.29 Rule of proof obligations that called evt/act/SIM

44 Figure 3.30 Example of evt/act/SIM PO .

page Figure No.

45 Figure 3.31 Event assumption for rule NAT

45 Figure 3.32 Rule of proof obligations that called evt/NAT

46 Figure 3.33 Event assumptions for rule FIN

46 Figure 3.34 Rule of proof obligations that called evt/FIN

47 Figure 3.35 Convergent Event assumption for rule VAR

47 Figure 3.36 Rule of proof obligations of Convergent Event

that called evt/VAR if the variant is numeric

47 Figure 3.37 Rule of proof obligations of Convergent Event that called

evt/VAR if the variant is a finite

48 Figure 3.38 anticipated Event assumption for rule VAR

48 Figure 3.39 Rule of proof obligations of anticipated Event that called

evt/VAR if the variant is numeric

48 Figure 3.40 Rule of proof obligations of anticipated Event that called

evt/VAR if the variant is a finite

49 Figure 3.41 Event assumption for rule WFIS

49 Figure 3.42 Rule of proof obligations that called evt/x/WFIS

57 Figure 4.1 Initial model of Binary search algorithm

59 Figure 4.2 First refinement of Binary search algorithm

59 Figure 4.3 Second refinement of Binary search algorithm

60 Figure 4.4 development Specification P0 of design pattern for binary search

60 Figure 4.5 Pattern refinement P1 of design pattern for binary search

62 Figure.4.6: The First step

62 Figure.4.7: The Second step

63 Figure.4.8: The Third step

63 Figure 4.9: The fourth step

63 Figure 4.10: The fifth step

65 Figure 4.11 : The screen shot of the proof before the SMT

proof, the button is active and the status is not proved.

66 Figure 4.12: The screen shot of the proof after a successful proof, the button

has been dis-activated and the status is ‘‘proved’’.

67 Figure 4.13 Initial model of minimum algorithm

68 Figure 4.14 First Refinement of minimum algorithm

69 Figure 4.15 Development Specification P0 of design pattern

for minimum algorithm.

70 Figure 4.16 Pattern refinement P1 of design pattern for minimum algorithm.

71 Figure 4.17 RODIN platform statistics for binary search model without using

pattern and SMT-Solver

71 Figure 4.18: RODIN platform statistics for binary search model using SMT-

Solver without using pattern

page Figure No.

71 Figure 4.19: RODIN platform statistics for binary search model using pattern

without SMT-Solver

72 Figure 4.20: RODIN platform statistics for binary search model using pattern

and SMT-Solver

75 Figure 4.21: RODIN platform statistics of POs for the minimum model

without using pattern and SMT-Solver

75 Figure 4.22 : RODIN platform statistics of POs for the minimum model using

SMT-Solver without using pattern

75 Figure 4.23: RODIN platform statistics of POs for the minimum model using

pattern without SMT-Solver

76 Figure 4.24 : RODIN platform statistics of POs for the minimum model using

pattern and SMT-Solver

81 Figure 5. 1 UML-B Diagrams

82 Figure 5.2 Generated Event-B specification of machine1

85 Figure 5.3 Transactions of ATM System

87 Figure 5.4 The proposed methodology diagram

89 Figure 5.5 ATM Package Diagram

89 Figure 5.6 UML-B specification of ATM abstract machine

91 Figure. 5.7. UML-B specification of ATM First Refinement

93 Figure 5.8. UML-B specification of ATM Second Refinement

95 Figure 5.9 The seventh refinement of UML-B state machine

96 Figure 5.10 Event-B pattern specification for ATM

97 Figure 5.11 Event-B seventh refinement pattern for ATM

98 Figure 5.12 Question/Response protocol Event-B Initial Model

99 Figure 5.13 (a) Question/Response protocol Event-B first refinement

99 Figure 5.13 (b) Question/Response protocol Event-B first refinement

100 Figure 5.13 (c) Question/Response protocol Event-B first refinement

111 Figure 6.1 EB2C# translation of user action.

116 Figure 6.2 Example of rewritten event (inc)

117 Figure 6.3. Example of Event translation for inc. event

117 Figure 6.4 Example of mini event and derived C# function

118 Figure 6.5 Example of generated event-calling function for minimum search

algorithm

118 Figure 6.6 Example of translation header of minimum C# derived code

119 Figure 6.7 Example of calling function environment for minimum search

algorithm

120 Figure 6.8 Example of rewritten event-B event (ejectCardWithCash)

page Figure No.

120 Figure 6.9 Event translation for Transaction event

121 Figure 6.10 Example of generated event-calling function

122 Figure 6.11 Part of translation header of ATM derived C# code

123 Figure 6.12. RSM report screen shot for automatically generated C# code of

minimum algorithm

123 Figure 6.13. RSM report screen shot for C# minimum algorithm’s code

obtained from C# programming language

124 Figure 6.14. RSM report screen shot for automatically generated C# code of

ATM model

124 Figure 6.15. RSM report screen shot for C# ATM code obtained from C#

programming language

 LIST OF TABLES

 page Subject

 72

 76

101

 102

 109

 Table 4.1: The Proof Obligation (POs) statistical analysis for the

binary search model

 .

Table 4.2: The POs statistics for the minimum model

Table 5.1: The POs of ATM seven machines refinement

 Table 5.2: The POs of ATM refinements models after applying

 the proposed phases

Table 6.1: Supported Event-B syntax

LIST OF CHARTS

Page Chart

 Chart 4.1: The Proof Obligation (POs) for the Binary 74

 search model

78 Chart 4.2: The POs for the minimum model

103 Chart.5.1 The POs for ATM model before and

after Applying SMT-Solve

 104Chart 5.2: The POs for ATM model before and after

Applying SMT-Solver and event-b pattern

List of Abbreviations

FM Formal Method

FMP Formal Method with Proofs

RODIN Rigorous Open Development environment for complex systems INdustry

day

VDM Vienna Development Method

CSP Communicating Sequential Processes

KLOC 1000 Line Of Code

PO Proof Obligation

SMT-SOLVER Satisfiability Modulo Theory- Solver

INV Invariant Preservation Proof Obligation Rule

FIS Feasibility Proof Obligation Rule:

GRD Guard Strengthening Proof Obligation Rule

MRG The Guard Merging Proof Obligation Rule

SIM Simulation Proof Obligation Rule

NAT The Numeric Variant Proof Obligation Rule

FIN The Finite Set Variant Proof Obligation Rule

VAR The Variant Proof Obligation Rule

WFIS The Non-Deterministic Witness Proof Obligation Rule

THM The Theorem Proof Obligation Rule

BSA Bank Service Agent

ATM Auto Teller Machine

UML-B Unified Modelling Language - B

EB2C# Event-B to C#

API Application Programming Interface

1

Chapter 1: Introduction

1.1 Introduction

Formal Methods are mathematically based modeling techniques

used to specify and verify hardware and software systems. Z method,

VDM (Vienna Development Method), B-Method (also known as classical

B) and Event-B are among the most recent formal methods [5, 8].

Event-B is an evolution of the classical B. Event-B uses the concept

of Refinement in modeling [31]. Event-B modeling starts with an abstract

specification of a system. Details are added during refinement steps in

order to arrive at a more detailed model. The mathematical language of

Event-B is based on set theory and first order logic. Based on the Event-B

language, a set of proofs can be produced and discharged for each Event-B

model. RODIN is an open source, extensible and integrated modeling tool

supporting Event-B. This tool is not only used as a modeling environment,

but also provides an integrated environment for proving properties of

models [9, 6, 26, 59].

Formal modelling is not only constructing descriptions, but also

proving some properties about the formal models. RODIN provides an

integrated environment for both modelling and proving. Extensibility of

RODIN makes it easy for new features to be added to it. During recent

years, some Eclipse based plug-ins were developed and added to RODIN:

SMT-Solver as prover, ProB [71] as an animator, UML-B [72] as

graphical environment provider, B2C# as a translator from B to C# code

and, B2Latex [70] as a translator from B to Latex, have been developed

and added to RODIN. Recently Event-B has been applied to developing

industrial cases. However building models of large and complex systems

results in large and complex models and difficult proofs. Some techniques

2

such as Pattern approach, SMT-Solver, UML and Event-B can help to

solve this difficulty.

This thesis focuses on pattern as an approach for modeling and

proving large and complex systems using Event-B. This approach enables

developers to reuse the proved model in Event-B. Refinement in Event-B

is too general. It does not explicitly show all of the relations between

behaviors of the abstract model, called abstract events, and the behaviors

of the refinement, called the concrete events. This approach is also capable

of showing an overall structure of several refinement levels. Therefore it

provides an effective way to handle complex development.

On the other hand, providing patterns and UML-B, makes the

modelling of large systems more manageable. Using UML-B and patterns,

we can achieve reusability and visualization in Event-B development.

Finally, we use code generation approach to generate C# code from

Event-B model. When we do this conversion, we achieve the validation of

C# code and guarantee that the code fulfills the requirement of model.To

achieve reusability, correctness and visualization, the used tool has been

developed as a plug-in tool for the RODIN platform.

1.2 Thesis Motivation and Contribution

The intent of this work is to give some insights on modeling and

formal modeling. These activities are supposed to be performed before

undertaking the effective coding of a computer system, so that the system

in question will be correct by construction.

We will also understand how it is possible to detect the presence of

inconsistencies in our models just by the fact that some proofs cannot be

done. The failure of the proof will provide us with some helpful clues

about what is wrong or insufficiently defined in our model. We will use

