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Abstract 

The systematic approach (formal method) is a correct valid path to 

convert software requirement to executable code. Each Formal Method 

with Proofs FMP have theorem behind it as B theorem with Event-B 

formal method. By formal method we can build large computerized 

complex systems. That is by three techniques: refinement, decomposition 

and generic instantiation. In this thesis, we integrate refinement and 

generic instantiation techniques in Event-B formal method. Practically, we 

used RODIN platform and its database tools of the Static Checker, the 

Proof Obligation Generator, the Prover and the Translator from B model 

to a programming language.   

The main aim of this work is rising the degree of automation and 

increasing efficiency of theorem proving technique to decrease the cost of 

such developments depends directly on them.  And also increase 

correctness and validation degree. All of them with stable reusability. So 

we propose using automatic theorem provers known as SMT-solvers with 

Event-B pattern. The benefit of this approach is to have strong validation 

pattern. This approach enhances the pattern reusability with high degree of 

automatic proving and low effort. Then, we propose a new refinement of 

ATM UML model by agentless data collection approach and convert it to 

be Event-B pattern. That convert is more suitable for mathematician. That 

convert reduce the proof obligation.  

Finally, we discuss a logical correct path to translate Event-B 

pattern to C# language code.  That is for both models and algorithms.  

Keywords:  Formal method, Event-B, Proof Obligations, UML-B Pattern, 

Event-B Pattern, ATM model, SMT-Solver, agentless data collection 

approach, Code Generation. 
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Chapter 1: Introduction 

1.1 Introduction 

Formal Methods are mathematically based modeling techniques 

used to specify and verify hardware and software systems. Z method, 

VDM (Vienna Development Method), B-Method (also known as classical 

B) and Event-B are among the most recent formal methods [5, 8]. 

 

Event-B is an evolution of the classical B. Event-B uses the concept 

of Refinement in modeling [31]. Event-B modeling starts with an abstract 

specification of a system. Details are added during refinement steps in 

order to arrive at a more detailed model. The mathematical language of 

Event-B is based on set theory and first order logic. Based on the Event-B 

language, a set of proofs can be produced and discharged for each Event-B 

model. RODIN is an open source, extensible and integrated modeling tool 

supporting Event-B. This tool is not only used as a modeling environment, 

but also provides an integrated environment for proving properties of 

models [9, 6, 26, 59].  

 

Formal modelling is not only constructing descriptions, but also 

proving some properties about the formal models. RODIN provides an 

integrated environment for both modelling and proving. Extensibility of 

RODIN makes it easy for new features to be added to it. During recent 

years, some Eclipse based plug-ins were developed and added to RODIN: 

SMT-Solver as prover, ProB [71] as an animator, UML-B [72] as 

graphical environment provider, B2C# as a translator from B to C# code 

and, B2Latex [70] as a translator from B to Latex, have been developed 

and added to RODIN. Recently Event-B has been applied to developing 

industrial cases. However building models of large and complex systems 

results in large and complex models and difficult proofs. Some techniques 



2 
 

such as Pattern approach, SMT-Solver, UML and Event-B can help to 

solve this difficulty.  
 

This thesis focuses on pattern as an approach for modeling and 

proving large and complex systems using Event-B. This approach enables 

developers to reuse the proved model in Event-B. Refinement in Event-B 

is too general. It does not explicitly show all of the relations between 

behaviors of the abstract model, called abstract events, and the behaviors 

of the refinement, called the concrete events. This approach is also capable 

of showing an overall structure of several refinement levels. Therefore it 

provides an effective way to handle complex development. 

 

On the other hand, providing patterns and UML-B, makes the 

modelling of large systems more manageable. Using UML-B and patterns, 

we can achieve reusability and visualization in Event-B development.  
 

Finally, we use code generation approach to generate C# code from 

Event-B model. When we do this conversion, we achieve the validation of 

C# code and guarantee that the code fulfills the requirement of model.To 

achieve reusability, correctness and visualization, the used tool has been 

developed as a plug-in tool for the RODIN platform.  

 

1.2 Thesis Motivation and Contribution 

The intent of this work is to give some insights on modeling and 

formal modeling. These activities are supposed to be performed before 

undertaking the effective coding of a computer system, so that the system 

in question will be correct by construction. 

We will also understand how it is possible to detect the presence of 

inconsistencies in our models just by the fact that some proofs cannot be 

done. The failure of the proof will provide us with some helpful clues 

about what is wrong or insufficiently defined in our model. We will use 


