

EVALUATING CONNECTING AL-MUKHA NEW WIND FARM TO YEMEN POWER SYSTEM

By

Eng. Majid Manea Manea Al-Barashi

A thesis submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

EVALUATING CONNECTING AL-MUKHA NEW WIND FARM TO YEMEN POWER SYSTEM

By Eng. Majid Manea Manea Al-Barashi

A thesis submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

Under supervision of

Prof. Dr. Essam El-Din Abo El-Zahab

Electrical Power and Machines Department Faculty of Engineering, Cairo University Associate Prof. Dr. Doaa Khalil Ibrahim

Electrical Power and Machines Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2015

EVALUATING CONNECTING AL-MUKHA NEW WIND FARM TO YEMEN POWER SYSTEM

By

Eng. Majid Manea Manea Al-Barashi

A thesis submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

Approved by the

Examining Committee:

Prof. Dr. Essam El-Din Abo El-ZahabSupervisors
(one vote)Associate Prof. Dr. Doaa Khalil IbrahimInternal ExaminerProf. Dr. Mohamed Salah Mohamed El-SobkyInternal ExaminerProf. Dr. Mohamed Said Abdel-Moateleb
Electronics Research InstituteExternal Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

Engineer:	Majid Manea Manea Al-Barashi
Date of Birth :	01/01/1984
Nationality :	Yemeni
E-mail :	majid-barashi@eng1.cu.edu.eg
Phone. :	+201125741311
Address :	13 K. Hassan, Al-Oroubah St., Maadi, Cairo.
Registration Date :	01 / 03 / 2012
Awarding Date :	
Degree :	Master of Science
Department :	Electrical Power and Machines Engineering
Supervisors :	Prof. Dr. Essam El-Din Abo El-Zahab
	Associate Prof. Dr. Doaa Khalil Ibrahim
Examiners :	Prof. Dr. Essam El-Din Abo El-Zahab
	Associate Prof. Dr. Doaa Khalil Ibrahim
	Prof. Dr. Mohamed Salah Mohamed El-Sobky
	Prof. Dr. Mohamed Said Abdel-Moateleb (Electronics
Resea	rch Institute)

Title of Thesis :EVALUATING CONNECTING AL-MUKHA NEWWIND FARM TO YEMEN POWER SYSTEM

Key Words:DIgSILENT PowerFactory, doubly fed induction generator,grid-connected wind farm, impact of wind power generation, power quality

Summary :

This thesis presents modeling and impact analysis of Al-Mukha wind farm (MWF) on Yemen power system. Two simulation studies are carried out; the first is impact on thermal limits, voltage variations, and system stability, with an MWF aggregated model. The other is analyzing low-voltage ride through, harmonics and flicker impact using the detailed MWF layout. The results show that the lines loading and voltage variations are slightly reduced and the system stability will not be affected. Although MWF rides-through the grid fault, it contributes harmonics higher than the limits while the flicker levels are far below any limits.

Acknowledgments

I humbly thank Almighty **ALLAH**, the Merciful and the Beneficent, who gave me health, thoughts, and co-operative people to enable me achieve this goal.

Thanks **ALLAH**, You are the unique donor for all achievements especially this work.

I would like to express my thanks and deep appreciation to my supervisor, **Prof. Dr. Essam El-Din Abo El-Zahab**, for the supervision, guidance, helpful discussions and valuable time.

I would like deeply to express my sincere thanks and heartiest gratitude to my supervisor, **Associate Prof. Dr. Doaa Khalil Ibrahim**, for her great faithful supervision, her guidance and encouragement during all stages of this research.

The financial support from the Ministry of High Education and Scientific Research of Yemen is gratefully acknowledged.

I would like to thank all my **family**, in special to my **parents**, my **brothers**, and my **sisters** for their continuous care, support, and patience. I also would like to thank all my **colleagues** and **friends**. They have contributed to this thesis more than they can imagine.

Last, but not least, I would like to thank my **wife** for the long support in my dreams and for understanding and handling long lone periods while I was working to finish this phase of our life. My appreciation goes to my daughters, **Reham** and **Shahd**, with whom I did not have much time to spend during the final months of my studies.

i

Dedication

This thesis is dedicated to my dear **wife** who has been a great source of motivation, love, and inspiration; to my beloved daughters, **Reham** and **Shahd**, for their love; and most specially to my dear **father** and **mother** for their encouragement and support over the years.

Table of Contents

ACKNOWLEDGMENTSI
DEDICATIONII
TABLE OF CONTENTS III
LIST OF TABLESVII
LIST OF FIGURES VIII
LIST OF SYMBOLS AND ABBREVIATIONSXIII
ABSTRACT XIII
CHAPTER 1 : INTRODUCTION1
1.1. Thesis Objectives
1.2. ENERGY SECTOR IN YEMEN
1.2.1. Historical Views
1.2.2. Ownership and Role of Government
1.2.3. Network Capacity
1.2.4. Power Stations
1.2.5. Transmission and Distribution Networks
1.2.6.Renewable Energy7
1.2.6.1. Solar Energy7
1.2.6.2. Wind Energy7
1.2.6.3. Geothermal Energy7
1.2.6.4. Biomass / Biofuels / Hydropower
1.3. AL-MUKHA WIND FARM PROJECT
1.4. ORGANIZATION OF THE THESIS
CHAPTER 2 : WIND POWER SYSTEMS12
2.1. WIND SITES
2.1.1. Locating a Site
2.1.2. Turbulence
2.2. WIND TURBINES
2.2.1 Turbine Performance

	2.2.2.	Turbine Components	15
	2.2.3.	Horizontal or Vertical?	15
	2.2.4.	Rotor Design	16
	2.2.5.	Drive Train and Generator	17
	2.3. E	ELECTRICAL SCHEMES IN WIND TURBINE GENERATOR SYSTEMS	17
	2.3.1.	Fixed Speed Wind Turbine	19
	2.3.2.	Full Variable Speed Wind Turbine	20
	2.3.3.	Limited Variable Speed Wind Turbine	20
	2.4. V	VIND FARMS AND GRID CONNECTION	21
	2.4.1.	Wind Farm Topology	23
	2.5. C	OFFSHORE WIND TECHNOLOGY	23
	2.6. C	CONSTRAINTS ON WIND CAPACITY	25
	2.7. E	INVIRONMENTAL CONSIDERATIONS	25
	2.8. F	'INANCIAL RISKS	26
	2.9. T	HE COST OF WIND POWER	26
CHA	PTER 3 : I	MPACT OF WIND POWER ON POWER SYSTEMS	28
CHA	PTER 3 : I 3.1. P	MPACT OF WIND POWER ON POWER SYSTEMS ower Quality Standard, Issues and its Consequences	28 30
CHA	PTER 3 : 1 3.1. P 3.1.1.	MPACT OF WIND POWER ON POWER SYSTEMS OWER QUALITY STANDARD, ISSUES AND ITS CONSEQUENCES Voltage Variation	28 30 31
CHA	PTER 3 : 1 3.1. P 3.1.1. 3.1.1.	 MPACT OF WIND POWER ON POWER SYSTEMS POWER QUALITY STANDARD, ISSUES AND ITS CONSEQUENCES Voltage Variation	28 30 31 31
CHA	PTER 3 : 1 3.1. P 3.1.1. 3.1.1. 3.1.1.	 MPACT OF WIND POWER ON POWER SYSTEMS OWER QUALITY STANDARD, ISSUES AND ITS CONSEQUENCES Voltage Variation	28 30 31 31 32
CHA	PTER 3 : I 3.1. P 3.1.1. 3.1.1. 3.1.1. 3.1.1.	 MPACT OF WIND POWER ON POWER SYSTEMS POWER QUALITY STANDARD, ISSUES AND ITS CONSEQUENCES Voltage Variation	28 30 31 31 32 32
CHA	PTER 3 : I 3.1. P 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.1.	 MPACT OF WIND POWER ON POWER SYSTEMS POWER QUALITY STANDARD, ISSUES AND ITS CONSEQUENCES Voltage Variation	28 30 31 31 32 32 32 33
CHA	PTER 3 : I 3.1. P 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.1.	 MPACT OF WIND POWER ON POWER SYSTEMS POWER QUALITY STANDARD, ISSUES AND ITS CONSEQUENCES Voltage Variation	28 30 31 31 32 32 32 33 34
CHA	PTER 3 : I 3.1. P 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.2.	 MPACT OF WIND POWER ON POWER SYSTEMS POWER QUALITY STANDARD, ISSUES AND ITS CONSEQUENCES Voltage Variation	28 30 31 31 32 32 32 33 34 34
CHA	PTER 3 : I 3.1. P 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.2. 3.1.3.	 MPACT OF WIND POWER ON POWER SYSTEMS POWER QUALITY STANDARD, ISSUES AND ITS CONSEQUENCES Voltage Variation	28 30 31 31 32 32 32 33 34 34 35
CHA	PTER 3 : I 3.1. P 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.2. 3.1.3. 3.1.4.	 MPACT OF WIND POWER ON POWER SYSTEMS POWER QUALITY STANDARD, ISSUES AND ITS CONSEQUENCES Voltage Variation	28 30 31 31 32 32 32 33 34 34 35 35
CHA	PTER 3 : I 3.1. P 3.1.1. 3.1.3. 3.1.3. 3.1.5.	 MPACT OF WIND POWER ON POWER SYSTEMS POWER QUALITY STANDARD, ISSUES AND ITS CONSEQUENCES Voltage Variation	28 30 31 31 32 32 32 33 34 34 35 35 36
CHA	PTER 3 : I 3.1. P 3.1.1. 3.1.5. 3.1.6.	 MPACT OF WIND POWER ON POWER SYSTEMS OWER QUALITY STANDARD, ISSUES AND ITS CONSEQUENCES Voltage Variation	28 30 31 31 32 32 32 33 34 34 34 35 35 36 36
CHA	PTER 3 : I 3.1. P 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.2. 3.1.3. 3.1.4. 3.1.5. 3.1.6. 3.1.7.	 MPACT OF WIND POWER ON POWER SYSTEMS YOWER QUALITY STANDARD, ISSUES AND ITS CONSEQUENCES Voltage Variation	28 30 31 31 32 32 32 33 34 34 35 35 36 36 37
CHA	PTER 3 : I 3.1. P 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.1. 3.1.2. 3.1.3. 3.1.4. 3.1.5. 3.1.6. 3.1.7. 3.1.7.	 MPACT OF WIND POWER ON POWER SYSTEMS POWER QUALITY STANDARD, ISSUES AND ITS CONSEQUENCES Voltage Variation	28 30 31 31 32 32 32 33 34 34 35 35 36 36 36 37 lity 37

3.1.8.	Low-Voltage Ride-Through Capability	
3.2.	SOLUTIONS FOR POWER QUALITY PROBLEMS FROM LITER	ATURE 38
CHAPTER 4 :	WIND TURBINE MODELING IN DIGSILENT	41
4.1.	POWER SYSTEM SIMULATION TOOL - DIGSILENT	41
4.2.	GRID COMPONENT BUILT-IN MODELS IN DIGSILENT	
4.2.1.	Electrical Machinery	
4.2.2.	Transformer	44
4.2.3.	Transmission Line Model	45
4.2.4.	Loads	45
4.3.	COMBINED HEAT AND POWER PLANT	46
4.4.	DYNAMIC MODELING OF DOUBLY-FED INDUCTION GENER	RATORS 47
4.4.1.	The Doubly-Fed Induction Machine Concept	47
4.4.2.	The DFIG Wind-Generator Model	
4.4.	2.1. Overview	
4.4.	2.2. Prime Mover and Controller	
4.4.	2.2.1. Wind Turbine	50
4.4.	2.2.2. Wind Speed Model	50
4.4.	2.2.3. Blade Angle Control	51
4.4.	2.2.4. Shaft	
4.4.	2.3. Generator, Rotor-Side Converter and Controls	
4.4.	2.3.1. Asynchronous Machine and Rotor Side Converter	53
4.4.	2.3.2. Rotor-Side Converter Controller	53
4.4.	2.3.3. Maximum Power Tracking (MPT)	53
4.4.	2.4. Protection	54
4.4.3.	Validation and Verification of the Model	54
CHAPTER 5 :	ANALYZING THE IMPACTS OF THE WIND FAR	M ON THE
NETWORK		58
5.1.	BASIS OF STUDIES	58
5.2.	STUDIES CONSIDERATIONS	60
5.3.	CONSIDERED WIND FARM MODEL	61
5.4.	IMPACT ON SYSTEM THERMAL LIMITS AND VOLTAGE VAR	NATIONS., 61

5.4.1. Analyzed Load Flow Study Cases	62
5.4.1.1. Peak Load without MWF	62
5.4.1.2. Peak Load with MWF	63
5.4.1.3. Minimum Load without MWF	64
5.4.1.4. Minimum Load with MWF	65
5.4.1.5. Summary	66
5.4.2. Contingency Analysis	70
5.4.2.1. Losing the Line Mareb – Bani Alhareth	70
5.4.2.2. Losing the Line Al-Mukha – Barh	72
5.5. IMPACT ON THE SYSTEM STABILITY	74
5.6. LVRT CAPABILITY OF DFIG BASED WTG	78
5.6.1. Simulation of Transient Stability Analysis In DIgSILENT	79
5.6.2. Wind Farm Layout	79
5.6.3. Simulation Study of DFIG During Faults	82
5.7. IMPACT ON POWER QUALITY ASPECTS (HARMONICS/FLICKER)	85
5.7.1. Analysis of the Harmonic Impact of Wind Turbines on the G	rid 85
5.7.1.1. Harmonic Load-Flow Calculations	85
5.7.1.2. Modeling of the Harmonic Source (Harmonic Spectra)	86
5.7.1.3. The Simulation Results	87
5.7.2. Impact on Flicker	89
5.7.2.1. General Methodology	89
5.7.2.2. Results of Studies	90
CHAPTER 6 : DISCUSSION AND CONCLUSIONS	92
6.1. CONCLUSIONS	92
6.2. RECOMMENDATIONS FOR FUTURE WORK	93
REFERENCES	94
PUBLISHED WORK	102

List of Tables

Table 5.1: Results from the simulations for the transient stability	85
Table 5.2: IEC 61000-3-6 summation exponents according to harmonic order [67].	87
Table 5.3: Current ad voltage THD at PCC	87
Table 5.4: Emission limits according to the IEC 61800-3 standard [6]	88
Table 5.5: IEEE 519 harmonic voltage limits [55]	89
Table 5.6: Indicative values of planning levels for P_{st} and P_{lt} in HV and EHV power	•
systems [68]	91

List of Figures

Fig. 1.1: One line diagram of transmission network	6
Fig. 1.2: The proposed location of Al-Mukha wind farm (MWF) with all po	wer
stations	8
Fig. 1.3: The proposed scenario of WTG in the project site [3]	10
Fig. 2.1: Power curve of a wind turbine (1 p.u. corresponds to the rated pow	ver of a
wind turbine) [6]	14
Fig. 2.2: Horizontal axis wind turbine components [7]	15
Fig. 2.3: A horizontal axis wind turbine [5]	16
Fig. 2.4: A wind turbine drive train [5]	18
Fig. 2.5: Fixed speed WT with an induction generator [8]	19
Fig. 2.6: Full variable speed WT with an induction generator or a synchrono	ous
generator [8]	20
Fig. 2.7: Full variable speed WT with a synchronous generator or a permane	ent magnet
synchronous generator without gearbox [8]	20
Fig. 2.8: Limited variable speed WT with a DFIG [8]	21
Fig. 2.9: Power smoothing effect from wind farms [9]	22
Fig. 2.10: Different wind farm topologies [10]	24
Fig. 3.1: Classification of the power quality [10]	31
Fig. 3.2: The voltage variation classification [22]	31
Fig. 3.3: Measured oscillating current caused by the connecting of shunt cap	pacitors
during the start-up sequence of a 225 kW wind turbine [6]	
Fig. 3.4: Spanish grid code	
(a) Low-voltage ride-through requirement	
(b) Reactive current requirement [32]	
Fig. 4.1: DIgSILENT graphical programming environment	43
Fig. 4.2: Doubly-fed induction generator and synchronous generator blocks	[53]44
Fig. 4.3: Positive sequence model of the 2-winding transformer with tap cha	anger
modeled at HV side [54]	44

Fig. 4.4: The Π circuit model of a transmission line [55]45
Fig. 4.5: General load representative [10]45
Fig. 4.6: Block diagram of the CHP unit implemented in DIgSILENT46
Fig. 4.7: Doubly-fed induction generator concept [56]47
Fig. 4.8: Complete scheme of the doubly-fed induction machine wind generator49
Fig. 4.9: TurbSim simulation method: a transformation from the frequency domain to
time domain producing wind output compatible with AeroDyn; optional coherent
structures are written to a separate file and superimposed in AeroDyn (they require a
full-field background wind file) [58]
Fig. 4.10: Spring-mass model of second order [56]
Fig 4.11: Equivalent circuit of the doubly-fed induction machine with rotor-side
converter [56]
Fig. 4.12: Simulation with turbulent wind speed, with mean speed 8.5 m/s and
turbulence intensity of 10%
Fig. 4.13: Simulation with turbulent wind speed, with mean speed 18 m/s, turbulence
intensity of 10% and gusts
Fig. 5.1: Yemen network scheme
Fig. 5.2: The current in transmission lines (peak load without MWF)
Fig. 5.3: The voltage in the substations (peak load without MWF)63
Fig. 5.4: The current in transmission lines (peak load with MWF)63
Fig. 5.5: The voltage in the substations (peak load with MWF)64
Fig. 5.6: The current in transmission lines (minimum load without MWF)64
Fig. 5.7: The voltage in the substations (minimum load without MWF)65
Fig. 5.8: The current in transmission lines (minimum load with MWF)65
Fig. 5.9: The voltage in the substations (minimum load with MWF)66
Fig. 5.10: Comparison of the current in transmission lines (peak load without and with
MWF)
Fig. 5.11: Comparison of the current in transmission lines (minimum load without and
with MWF)67
Fig. 5.12: Comparison of the voltage in the substations (peak load without and with
MWF)

Fig. 5.13: Comparison of the voltage in the substations (minimum load without and
with MWF)69
Fig. 5.14: Comparison of the current in transmission lines (before and after losing the
line Mareb – Bani Alhareth)71
Fig. 5.15: Comparison of the voltage in the substations (before and after losing the
line Mareb – Bani Alhareth)71
Fig. 5.16: Comparison of the current in transmission lines (before and after losing the
line Al-Mukha – Barh)72
Fig. 5.17: Comparison of the voltage in the substations (before and after losing the
line Al-Mukha – Barh)73
Fig. 5.18: Generators relative power angle (sudden fall of MWF)
Fig. 5.19: Generators relative power angle (3-phase short circuit in Al-Mukha
substation)76
Fig. 5.20: Generators relative power angle (1-phase short circuit in Al-Mukha
substation)77
Fig. 5.21: MWF network
Fig. 5.22: Voltage profile according to the requirements for LVRT capability of
DFIGs [65, 66]81
Fig. 5.23: Voltages (at the PCC and at the MV bus), the generator speed, the rotor
current, and the pitch angle during a solid three-phase fault for 150 ms at high wind
conditions for 4 s
Fig. 5.24: Generator active power, phase current, reactive current, and reactive power
during a solid three-phase fault for 150 ms at high wind conditions for 4 s
Fig. 5.25: Current and voltage HD at the PCC
Fig. 5.26: Definition of flicker coefficients using the flicker coefficients type

List of Symbols and Abbreviations

$C(\psi_k)$	Flicker coefficient
CHP	Combined heat and power
C_p	Power coefficient (aerodynamic efficiency)
d	Relative voltage change (%)
DFIG	Doubly-fed induction generator
DSL	Dynamic simulation language
HD(s)	Harmonic distortion(s)
HV	High voltage
IEC	International Electro-technical Commission
$k_f(\psi_k)$	Flicker step-factor
$k_u(\psi_k)$	Voltage change factor
LVRT	Low-voltage ride-through
MV	Medium voltage
MWF	Al-Mukha wind farm
<i>N</i> ₁₀	Maximum number of switching operations in a 10-minutes period
N ₁₂₀	Maximum number of switching operations in a 120-minutes period
N _{wt}	Number of WTGs at the PCC
PCC	Point of common coupling
PDF	Probability distribution function
PEC	Public Electricity Corporation
P _{lt_cont}	Long term flicker disturbance factor during continuous operation
P _{lt_sw}	Long term flicker disturbance factor due to switching actions
P _{st_cont}	Short term flicker disturbance factor during continuous operation
P _{st_sw}	Short term flicker disturbance factor due to switching actions
Pw	Wind turbine generator output power
PWM	Pulse-width modulation
SCR	Short circuit ratio