Effect of Elevated Temperature on RC Pre-Cracked Beams Repaired and Strengthened Using Jackets of Glass Fiber Reinforced Cementitious Materials

By

Eng. Yasmin Hefni Abd El-Aziz
M.Sc. Civil Engineering
Ain Shams University, 2010

A Thesis
Submitted in Partial Fulfillment for Requirements of the Degree of Doctor of Philosophy in Civil Engineering (Structural Engineering)

Supervisors

Dr. Yehia Abd El-Zaher Ali
Associate Professor
Structural Engineering Department
Faculty of Engineering-Ain Shams University

Dr. Mona Mostafa Abdel Wahab
Associate Professor
Structural Engineering Department
Faculty of Engineering-Ain Shams University

2018
To my parents,
Husband, Son and sister
Thesis: Doctor of Philosophy in Civil Engineering
(Structural Engineering)

Researcher Name: Yasmin Hefni Abd El-Aziz

Thesis Title: Effect of Elevated Temperature on RC Pre-Cracked Beams Repaired and Strengthened Using Jackets of Glass Fiber Reinforced Cementitious Materials

Examiners Committee:

Prof. Dr. Mahmoud Reda Taha
Professor & Chair
Department of Civil, Construction and Environmental Engineering
University of New Mexico

Prof. Dr. El-Sayed Abdel-Raouf Nasr
Professor of Properties and Testing of Materials
Faculty of Engineering - Ain Shams University

Dr. Yehia Abd El-Zaher Ali
Associate Professor - Structural Engineering Department
Faculty of Engineering - Ain Shams University
(Supervisor)

Dr. Mona Mostafa Abdel Wahab
Associate Professor - Structural Engineering Department
Faculty of Engineering - Ain Shams University
(Supervisor)
Thesis: Doctor of Philosophy in Civil Engineering
(Structural Engineering)

Researcher Name: Yasmin Hefni Abd El-Aziz

Thesis Title: Effect of Elevated Temperature on RC Pre-Cracked Beams Repaired and Strengthened Using Jackets of Glass Fiber Reinforced Cementitious Materials

Supervision Committee:

Dr. Yehia Abd El-Zaher Ali
Associate Professor - Structural Engineering Department
Faculty of Engineering - Ain Shams University

Dr. Mona Mostafa Abdel Wahab
Associate Professor - Structural Engineering Department
Faculty of Engineering - Ain Shams University
<table>
<thead>
<tr>
<th>INFORMATION ABOUT THE RESEARCHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Date of birth</td>
</tr>
<tr>
<td>Place of birth</td>
</tr>
<tr>
<td>Last academic degree</td>
</tr>
<tr>
<td>Field of specialization</td>
</tr>
<tr>
<td>University issued the degree</td>
</tr>
<tr>
<td>Date of issued degree</td>
</tr>
<tr>
<td>Current job</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENT

All words cannot express how deep I am grateful to Dr. Yehia Abd El-Zaher Ali, Associate Professor, Structural Engineering Department - Faculty of Engineering - Ain Shams University, for his continuous advice, precious remarks and good discussion throughout the work presented in this doctorate.

I am also wish to thank Dr. Mona Mostafa Abdel Wahab, Associate Professor, Structural Engineering Department - Faculty of Engineering - Ain Shams University, for her good interest, encouragements and hard support all the time to complete this research.

I would like to thank the technical staff and labors of the laboratory of Properties and Testing of Materials at Ain Shams University for their hard work during the experimental phase of my research.

Many thanks for the staff of Talaat Mostafa Construction Company for their good help and encouragements.
STATEMENT

This thesis is submitted to the Faculty of Engineering, Ain Shams University, as a partial fulfillment for the degree of Doctor of Philosophy in Civil Engineering (Structural Engineering).

The work included in this thesis was carried out by the author, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Name: Yasmin Hefni Abd El-Aziz

Date: / /
ABSTRACT

Due to various causes of deterioration during the service life of concrete structures, retrofitting is a major need aimed to improve their future performance. Jacketing has been considered as one of the most widely used methods of rehabilitation of deteriorated beams.

Fire attack is one of the important causes which may lead to serious symptoms of distress and in many cases to total collapse of the structure. Selecting cementitious materials of lower thermal conductivity for repair and strengthening of RC structural members will increase the thermal isolation of the reinforcement and thus improves the fire resistance of structures. Besides, using environmentally friendly cementitious materials as partial replacement of cement in concrete jackets will reduce concrete cost and environmental pollution as well as conserve natural resources.

The main objective of this research is to investigate experimentally and numerically the behavior of flexural cracked RC beams strengthened using jackets of activated high volume fly ash concrete with added glass fibers at normal temperature and after exposure to elevated temperatures.

The experimental investigation comprises two phases: Phase one was designed to select the desirable repair and strengthening material by investigating the effect of fly ash replacement ratio and glass fiber addition ratio on concrete strength at ambient temperature and after
exposure to elevated temperatures. Besides, four methods of chemical activation were applied to overcome the low early strength of fly ash concrete and enhance its reactivity.

Phase two included testing of 18 reinforced concrete beams strengthened using jackets of the selected repair and strengthening material based on phase I results and loaded in four point loading test. The parameters of the study included level of damage induced before jacketing, effect of reinforcing the jackets, and effect of exposure to elevated temperatures according to ASTM E119 fire rating curve.

The beams were of dimensions 100x200x2250 mm and main reinforcement of 2T12 mm. The jackets were three sided with thickness 50 mm. Measurements and observations included the cracking load, crack propagation, deflection, ultimate flexural capacity, beam ductility, and failure mode.

The results of the experimental investigation showed the efficiency of using concrete containing activated high volume fly ash (40%) and glass fiber (0.7 %) as an economic, environmentally friendly, and fire resistant repair and strengthening material. Besides, the results revealed its efficiency as an isolation material for concrete structures due to its lower thermal conductivity which helps in protecting the inner part and reinforcement of RC elements upon exposure to elevated temperatures.

Three-dimensional nonlinear finite element model has been developed using ANSYS software suitable for analyzing RC beams repaired and strengthened using jackets of activated fly ash and glass fibers and loaded with four point loading arrangement. The data used for the numerical analysis includes beam dimensions, reinforcement, materials properties at normal temperature and after exposure to elevated temperatures, and loading scheme. The parameters of the study included level of damage
induced before jacketing, effect of exposure to fire and effect of reinforcing the jackets. The data obtained from the experimental investigation was used to verify the accuracy of the presented finite element model. The numerical analysis showed good agreement when compared with the experimental results.

Finite element thermal analysis was conducted using ANSYS software taking into considerations the thermal properties of different concrete types; density, thermal conductivity and specific heat. Multiple regressions analysis of temperature data attained from the thermal analysis was performed to present simple equations for predicting temperature distribution through normal weight and low weight concrete beam sections when exposed to elevated temperature according to ASTME119 fire rating curve.

In addition, this research offered mathematical equation to evaluate the equivalent thickness of concrete layer that give the same thermal resistance of different fire protection materials.

KEYWORDS

Fly Ash, Glass fibers, Repair, Ansys, Beams, Elevated Temperature, Thermal analysis, Concrete, Fire
TABLE OF CONTENTS

ACKNOWLEDGMENT .. I
STATEMENT ... III
ABSTRACT ... III
KEYWORDS ... III
TABLE OF CONTENTS .. VI
LIST OF FIGURES ... XII
LIST OF TABLES .. XXI
SYMPOLS .. XXIV

CHAPTER 1 ... 1
INTRODUCTION ... 1
1.1 General ... 1
1.2 Research Objective and Scope .. 2
1.3 Thesis Organization .. 3

CHAPTER 2 ... 5
LITERATURE REVIEW .. 5
2.1 Introduction ... 5
2.2 Properties of Concrete Containing Fly Ash ... 6
 2.2.1 Introduction ... 6
 2.2.2 Benefits of fly ash in concrete ... 7
 2.2.3 High-volume fly ash concrete ... 7
 2.2.3.1 Environmental benefits ... 8
 2.2.3.2 Disadvantages .. 8
 2.2.4 Properties of fresh concrete ... 8
 2.2.4.1 Hydration heat ... 8
 2.2.4.2 Workability .. 9
 2.2.5 Properties of hardened concrete ... 10
 2.2.5.1 Compressive strength .. 10
 2.2.5.2 Splitting strength ... 11
 2.2.5.3 Flexural strength ... 12
 2.2.5.4 Modulus of elasticity .. 13
 2.2.5.5 Bond strength ... 14
 2.2.5.6 Drying shrinkage .. 14
 2.2.5.7 Durability ... 15
 2.2.6 Fire resistance .. 16
 2.2.6.1 Mechanical properties ... 16
 2.2.6.2 Thermal properties ... 19
2.2.7 Chemical activation of high volume fly ash concrete

2.2.7.1 Alkali activation

2.2.7.2 Sulfate activation

2.2.7.3 Other types of chemical activation

2.3 Properties of Concrete Containing Glass Fibers

2.3.1 Introductions

2.3.2 Properties of fresh concrete

2.3.2.1 Workability

2.3.3 Properties of hardened concrete

2.3.3.1 Compressive strength

2.3.3.2 Splitting tensile strength

2.3.3.3 Flexural strength

2.3.3.4 Modulus of elasticity

2.3.3.5 Energy dissipated

2.3.3.6 Durability

2.3.4 Fire resistance

2.3.4.1 Mechanical properties

2.3.4.2 Thermal properties

2.4 Repair and Strengthening of RC Beams

2.4.1 Introduction

2.4.2 Repair and strengthening of RC beams using concrete jackets at normal temperature

2.4.3 Repair and strengthening of RC beams using concrete jackets at elevated temperature

2.5 Finite Element Modeling of RC Beams

2.5.1 Modeling of strengthened RC beams using concrete jackets at normal temperature

2.5.2 Modeling of strengthened RC beams using concrete jackets at elevated temperatures

2.6 Prediction of Temperature Distribution in RC Members subjected to Elevated Temperature

2.6.1 Introduction

2.6.2 Wickstrom equations

2.6.3 Kodur et al. equations

2.6.4 Desai equations

2.6.5 Abbasi and Hogg equations

2.6.6 Gao et al. equation

2.6.7 Wickstrom and Hadziselimovic equations
CHAPTER (3).. 88
EXPERIMENTAL STUDY .. 88
3.1 Introduction .. 88
3.2 Research Program ... 88
3.3 Used Materials ... 91
 3.3.1 Cement .. 91
 3.3.2 Fine aggregate ... 92
 3.3.3 Coarse aggregate .. 93
 3.3.4 Water .. 93
 3.3.5 Fly ash ... 94
 3.3.6 Glass fibers .. 94
 3.3.7 Chemical activators .. 96
 Sodium silicate (Na_2SiO_3) .. 96
 Sodium hydroxide (NaOH) ... 96
 Sodium sulfate (Na$_2$SO$_4$) .. 97
 3.3.8 Chemical admixture ... 97
3.4 Phase I: developing an environmental friendly repair and strengthening cementitious material .. 97
 3.4.1 Mix proportions .. 97
 3.4.2 Mixing, casting and curing ...100
 3.4.3 Heating scheme ...100
 3.4.4 Testing ...101
 3.4.4.1 Compression test ..102
 3.4.4.2 Indirect tension test ...102
 3.4.4.3 Flexure test ...103
 3.4.4.4 Static modulus of elasticity test ...103
 3.4.4.5 Pullout test ..104
3.5 Phase II: investigate the flexural behavior of RC beams repaired and strengthened using jackets containing activated fly ash and glass fibers 105
 3.5.1 Details of beam specimens ...105
 3.5.2 Concrete mix proportions for beam specimens ..106
 3.5.3 Test specimens ...106
 3.5.4 Preparation of test specimens ..108
 3.5.4.1 Beams ..108
 3.5.4.2 Jackets ..108
 3.5.5 Heating Scheme ...111
 3.5.5.1 Concrete mix specimens ..111