

Nanoparticulate delivery systems for liver targeting

A Thesis submitted for partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Pharmaceutical Sciences (Pharmaceutics)

By

Eman Mohammed Hamed EL-Marakby

Bachelor of Pharmaceutical Science, June 2004, Ain Shams University Master Degree in Pharmaceutics, 2010, Ain Shams University Assistant lecturer, Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University

Under the supervision of

Prof. Dr. Nahed Daoud Mortada

Professor of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Ain Shams University

Prof. Dr. Samar Mansour Holayel

Professor of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Ain Shams University

Assoc. Prof. Dr. Rania Mohammed Hathout

Associate Professor of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Ain Shams University

Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy Ain Shams University Cairo 2018

أنظمة توصيل نانونية لإستهداف الكبد ر سالة مقدمة من الماجستير / إيمان محد حامد المراكبي بكالوريوس العلوم الصيدلية 2004، جامعة عين شمس ماجستير الصيدلانيات 2010، جامعة عين شمس المدرس المساعد بقسم الصبدلانيات والصبدلة الصناعية ، كلية الصبدلة، جامعة عين شمس للإستيفاء الجزئي لمتطلبات الحصول على درجة دكتوراه الفلسفة في العلوم الصيدلية (صيدلانيات) تحت إشراف أ.د. ناهد داوود مرتضى أستاذ الصيدلانيات والصيدلة الصناعية- كلية الصيدلة - جامعة عين شمس أ.د. سمر منصور هليل أستاذ الصيدلانيات والصيدلة الصناعية- كلية الصيدلة - جامعة عين شمس أمد رانيا محد حتحوت أستاذ مساعد الصيدلانيات والصيدلة الصناعية- كلية الصيدلة - جامعة عين شمس قسم الصيدلانيات والصيدلة الصناعية

كلية الصيدلة - جامعة عين شمس

1.11

صدق الله العظيم

سورة النساء اية ١١٣

Acknowledgement

First and foremost thanks to God by the grace of whom this work was achieved.

No word could ever express my deep thanks and profound gratitude to *Prof. Dr. Nahed Daoud Mortada*, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University. Her motivation, enthusiasm, and immense knowledge, keen interest, continuous scientific advices and love have deeply inspired me. Her willingness to give her time so generously has been very much appreciated. She has taught me more than I could ever give her credit for here. I could not have imagined having a better advisor and mentor for my Ph.D. study.

I am also grateful to *Prof. Dr. Samar Mansour Holayel*, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for the valuable guidance, precious advice, great help, continuous encouragement and support throughout the development of this work.

Immeasurable appreciation and deepest gratitude to *Dr. Rania Mohammed Hathout*, Associate Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University. I have been extremely lucky to have a supervisor who cared so much about my work, and who responded to my questions and queries so promptly. She has taught me the methodology to carry out a research and to present it as clearly as possible. She has shown me, by her example, what a good scientist (and person) should be. I was honored by working under her supervision.

I owe a deep sense of gratitude to *Dr. Rihab Osman Ahmed*, Associate Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University for her valuable support.

A special debt of gratitude and thanks to my dear friends, *Mai Mansour*, lecturer of Pharmaceutics, and *Eman El-Awady*, lecturer of pharmaceutical chemistry, Faculty of Pharmacy, Ain Shams University, who have encouraged me in every step and has always provided me with ultimate moral support and guidance.

In my daily work i have been blessed with friendly and cheerful *colleagues* in the Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University. I would like to thank them all for their continuous support and encouragement.

Appreciation also goes to *National Cancer Institute staff* for helping me in performing the cytotoxicity study.

I am especially grateful for *Prof. Ismail Taha*, Associate Professor in Atomic Energy Authority for helping me in performing *in vivo* biodistribution study.

Lastly but not least, I am extremely grateful to my dear mother, father and siblings for their love, caring, sacrifices, great effort and kind help throughout every step in my life. Your prayer for me was what sustained me thus far.

Eman Mohammed

2018

Dedication

I dedicate this thesis to my dear mother, father and my beloved daughter and son, Hala and Omar. Thank you.

List of Content

Item	
List of Abbreviations	Ι
List of Tables	IV
List of Figures	VI
List of Schemes	X
Abstract	XI
General Introduction	1
Scope of Work	35
Chapter One: Preparation and Characterization of Chemically Modified	
Low Molecular Weight Chitosan	l
Introduction	
Experimental	
Materials	
Equipment	45
Methodology	46
I- Purification of chitosan	46
II- Modification of chitosan	47
III- Determination of degree of N-substitution using ninhydrin assay	48
IV- Physico-chemical analyses of the prepared polymers	49
A- ¹ H NMR spectrometry	49
B- FTIR spectrometry	49
C- X-ray diffraction	49
D- Differential scanning colorimetry (DSC)	49
E- Determination of critical aggregation concentration (CAC) of valerate	50
modified chitosan	30

Item		
V- Preparation and characterization of unloaded chitosan/tripolyphosphate	50	
(unmodified and modified) nanoparticles	30	
VI- Evaluating the <i>ex-vivo</i> stability of plain modified chitosan nanoparticles	51	
(PC and MC) in rat serum	51	
Results and Discussion		
I- Degree of N-substitution in modified chitosan	52	
II- Physico-chemical analyses of the prepared polymer		
A- ¹ H NMR spectrometry	54	
B- FTIR spectrometry	54	
C- X-ray diffraction	57	
D- Differential scanning colorimetry (DSC)	57	
E- Critical aggregation concentration (CAC) of the valerate modified	60	
chitosan (MC)	UU	
III- Characterization of the unloaded chitosan /TPP nanoparticles	61	
IV- <i>Ex-vivo</i> stability of plain nanoparticles in rat serum	65	
Conclusions	68	
Chapter Two: Formulation of Optimized Ferulic acid Loaded Valerate		
Chitosan Nanoparticles		
Introduction	70	
Experimental	76	
Materials	76	
Equipment	76	
Methodology	77	
I- Development of chromatographic method for quantitative assay of ferulic	77	
acid in vitro	11	
A- Chromatographic conditions	77	

Item		
B- Method validation	78	
1- Linearity	78	
2- Precision	78	
3- Accuracy and % Recovery		
4- Limit of detection (LOD)		
5- Limit of quantification (LOQ)		
II-Preparation of ferulic acid loaded chitosan /TPP nanoparticles	80	
A- Optimization of ferulic acid loaded chitosan nanoparticles using D-		
optimal experimental design	00	
B- Characterization of ferulic acid loaded chitosan nanoparticles	83	
1- Determination of drug encapsulation efficiency (EE%)	83	
2- Particle size analysis	83	
3- Zeta potential (ζ) determination	84	
III- Morphological examination by transmission electron microscope (TEM)		
Results and Discussion	85	
I- Validation of chromatographic method for <i>in vitro</i> quantitative assay of	85	
ferulic acid in phosphate buffer saline (pH 7.4)	03	
A- Linearity	85	
B- Precision and accuracy	87	
C- Limit of detection (LOD)	87	
D- Limit of quantification (LOQ)	87	
II- Optimization of ferulic acid loaded chitosan nanoparticles using D-	00	
optimal experimental design	90	
A- Drug encapsulation efficiency (EE%)	90	
B- Particle size analysis	97	

Item	
C- Poly dispersity index analysis	98
D- Zeta potential analysis	103
E- Morphological examination by transmission electron microscope (TEM)	108
Conclusions	
Chapter Three: Formulation of Optimized Ferulic acid Conjugated	
Valerate Chitosan Nanoparticles	
Introduction	111
Experimental	116
Materials	116
Equipment	116
Methodology	
I-Preparation of optimized plain valerate chitosan nanoparticles	
II- Preparation of ferulic acid conjugated valerate chitosan nanoparticles for	
passive targeting	
III- Characterization of the conjugated ferulic acid-chitosan nanoparticles	
A- Conjugation efficiency	
B- Particle size and zeta potential analysis	
IV- Preparation and characterization of glycyrrhizin surface-modified	
chitosan nanoparticles for active targeting	117
A- Oxidation of glycyrrhizin (GL)	
B- Linkage of oxidized glycyrrhizin to the prepared nanoparticles	
C- Particle size and zeta potential analysis	
V- Detection of glycyrrhizin surface conjugation to the prepared	121
nanoparticles	
A- ¹ H NMR spectrometry	
B- Ninhydrin assay	121

Item	
VI-Morphological examination by transmission electron microscope (TEM)	122
VII- In vitro release of ferulic acid	122
VIII- Physical stability	123
IX- Freeze drying of selected ferulic acid loaded MC NPs formulae	
X- Sterility study	
Results and Discussion	
I- Optimization of plain valerate chitosan nanoparticles	125
II-Characterization of Ferulic acid conjugated MC nanoparticles	127
III- Confirmation of the glycyrrhizn surface conjugation to the prepared nanoparticles	132
A- ¹ H NMR spectrometry	132
B- Ninhydrin assay	
IV-Characterization of glycyrrhizin surface modified valerate chitosan nanoparticles	136
V- Morphological examination by transmission electron microscope (TEM)	136
VI- In vitro release study	137
VII- Stability study	138
VIII- Particle size, size distribution and zeta potential of freeze dried nanoparticle formulae	141
IX- Characterization of irradiated nanoparticles	143
Conclusions	146
Chapter Four: Cytotoxicity and In vivo Biodistribution Study of Selected	
Ferulic acid Conjugated Nanoparticles	
Introduction	148
Experimental	153
Materials	153

Item			
Equipment			
Methodology	155		
I-Cytotoxicity evaluation by SRB assay	155		
A- Cells and culture conditions			
B-Maintenance of the human cancer cell lines in the laboratory			
C- Sulphorhodamine B assay of cytotoxic activity	156		
II- In vivo Biodistribution studies	157		
A-Radiolabelling of ferulic acid			
B- Animal handling procedure			
Results and discussion			
I- Cytotoxicity of selected ferulic acid conjugated nanoparticles	161		
II- Radiolabelling of ferrulic acid	164		
III- Biodistribution and targeting assessment study			
Conclusions			
General Conclusion and Future Perspectives			
Summary	171		
References	181		
Appendix I: Ethical committee approval for <i>in vivo</i> studies			
Appendix II: Published paper			
Arabic summary			

List of Abbreviations

Abbreviation	Designation
ASH	alcohol-induced steatohepatitis
ANOVA	Analysis of variance
ASGP-receptor	Asialoglycoprotein receptor
CAC	Critical aggregation concentration
CAT	Catalase
CE%	Conjugation efficiency
CLs	Cationic liposomes
Соиб	Coumarin 6
CS	Chitosan
CV	Coefficient of variation
CytoMP	Cytomembrane
DLS	Dynamic light scattering
DMSO	Dimethyl sulfoxide
DoE	Design of experiments
DOX	Doxorubicin
DSC	Differential scanning colorimetry
EDC	N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide
	hydrochloride
EE%	Encapsulation efficiency
FA	Ferulic acid
FCM	Flow cytometry
FITC	Fluorescein isothiocyanate
FTIR	Fourier transform infrared spectroscopy
GA	Glycyrrhetinic acid
GL	Glycyrrhizin
h	Hour
¹ H NMR	Proton nuclear magnetic resonance
HBsAg	Hepatitis B surface antigen
HBV	Hepatitis B virus
НС	Modified chitosan after 4 hours reaction

Abbreviation	Designation
HCC	Hepatocellular carcinoma
HCV	Hepatitis C virus
HO/BVR	Heme oxygenase/biliverdin reductase
HPLC	High performance liquid chromatography
HSA	Human serum albumin
HSC	Hepatic stellate cells
IC ₅₀	50% inhibitory concentration
ICH	International Conference on Harmonization
IV	Intravenous
КС	Kupffer cells
LOD	Limit of detection
LOQ	Limit of quantification
MC	Modified chitosan after 40 minute reaction
MDR	Multidrug resistance
min	Minute
ml	Milliliter
MTT	Tetrazolium
NASH	Non-alcoholic steatohepatitis
NBS	n-bromosuccinamide
NLC	Nanostructred lipid carrier
nm	Nanometer
NPs	Nanoparticles
O.D.	Optical density
OATP	Organic anion transporting polypeptides
°C	Degree celsius
P407	Poloxamer 407
PBC	Primary biliary cirrhosis
PBS	Phosphate buffer saline
PC	Purified chitosan
PDC	Polymer-drug conjugates
PDGF-β	Platelet derived growth factor β
PDI	Polydispersity index
PEG	Poly ethylene glycol

Abbreviation	Designation
PLGA/PEO	poly (D,L-lactide-co-glycolide)/polyethylene oxide
PS	Particle size
PSC	Primary sclerosing cholangitis
РТХ	Paclitaxel
\mathbb{R}^2	Coefficient of determination
RNS	Reactive nitrogen species
ROS	Reactive oxygen species
SD	Standard deviation
SE	Standard error
SEC	Sinusoidal endothelial cells
SOD	Superoxide dismutase
SRB	Sulforhodamine B
TEM	Transmission electron microscopy
Tg′	Glass transition temperature
TPP	Sodium tripolyphosphate
ZP	Zeta potential
λmax	Wavelength of maximum absorbance
μg	Microgram
μl	Microliter
2FI	Two factor interaction model