



# MULTI-OBJECTIVE OPTIMIZATION OF DOUBLE-TUNED FILTERS IN DISTRIBUTION POWER SYSTEMS USING NON-DOMINATED SORTING GENETIC ALGORITHM-II

By

**Eng. Mohamed Ahmed Mohamed Fahmy** 

A thesis submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE In Electrical Power and Machines Engineering

# FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

# MULTI-OBJECTIVE OPTIMIZATION OF DOUBLE-TUNED FILTERS IN DISTRIBUTION POWER SYSTEMS USING NON-DOMINATED SORTING GENETIC ALGORITHM-II

By

**Mohamed Ahmed Mohamed Fahmy** 

A thesis submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE In Electrical Power and Machines Engineering

Under supervision of

Assoc. Prof. Ahmed M. Ibrahim

Associate Professor of Electrical Power Engineering Electrical Power and Machines Department Faculty of Engineering, Cairo University

## FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

# MULTI-OBJECTIVE OPTIMIZATION OF DOUBLE-TUNED FILTERS IN DISTRIBUTION POWER SYSTEMS USING NON-DOMINATED SORTING GENETIC ALGORITHM-II

By

### **Mohamed Ahmed Mohamed Fahmy**

A thesis submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE In Electrical Power and Machines Engineering

#### **Approved by the Examining Committee:**

Assoc. Prof. Dr. Ahmed Mohamed Ibrahim,Thesis Main AdvisorElectrical Power and Machines DepartmentFaculty of Engineering, Cairo University

**Prof. Dr. Mohamed Salah El Sobki,** Electrical Power and Machines Department Faculty of Engineering, Cairo University

**Prof. Dr. Almoataz Youssef Abdelaziz,** Electrical Power and Machines Department Faculty of Engineering, Ain Shams University **Internal Examiner** 

**External Examiner** 

## FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2018

| <b>Engineer's Name:</b>   | Mohamed Ahmed Mohamed Fahmy                                              |
|---------------------------|--------------------------------------------------------------------------|
| Date of Birth:            | 26/07/1990                                                               |
| Nationality:              | Egyptian                                                                 |
| E-mail:                   | Mohamad.fahmy@enppi.com                                                  |
| Phone:                    | +201159153093                                                            |
| Address:                  | 28 <sup>th</sup> , Bashayeir district- 6 <sup>th</sup> of October - Giza |
| <b>Registration Date:</b> | 01/10/2014                                                               |
| Awarding Date:            | 2018                                                                     |
| Degree:                   | Master of Science                                                        |
| Department:               | Electric Power and Machines Engineering                                  |
| Supervisors:              | Assoc. Prof. Ahmed M. Ibrahim                                            |



#### **Examiners:**

| Assoc. Prof. Dr. Ahmed Mohamed Ibrahim,                                    | Thesis Main Advisor |
|----------------------------------------------------------------------------|---------------------|
| Prof. Dr. Mohamed Salah El Sobki,                                          | Internal Examiner   |
| Prof. Dr. Almoataz Youssef Abdelaziz,                                      | External Examiner   |
| Electrical Power and Machines Department-Faculty of Engineering, Ain Shams |                     |
| University                                                                 |                     |

#### **Title of Thesis:**

#### MULTI-OBJECTIVE OPTIMIZATION OF DOUBLE-TUNED FILTERS IN DISTRIBUTION POWER SYSTEMS USING NON-DOMINATED SORTING GENETIC ALGORITHM-II

#### **Keywords:**

Power quality, harmonics, singled-tuned filter, double-tuned filter, NSGA-II

#### **Summary:**

This thesis proposes an optimization method to find the optimal design of different filters' types to reduce harmonic distortion in electrical power systems, and thus improving power quality performance of these systems. Non-dominated sorting genetic algorithm (NSGA-II) has been employed and tested using MATLAB. In this thesis, the operating principles of the single and double-tuned filters and the design equations to calculate its parameters directly from the known power system data are presented. Further, a comparative analysis between multi-arm single-tuned filter and double-tuned filter to investigate the performance of both filters in mitigating harmonics and improving parameters of power quality is introduced. Then, a performance of two different configurations of damped double-tuned filter is investigated in reducing both the system's transmission line loss and filter's loss simultaneously, while maintaining the individual and total harmonic distortion limits stated in IEEE Std. 519

#### ACKNOWLEDGMENT

Firstly, I am grateful to God for the good health and well-being that are necessary to complete this thesis. I would like deeply to express my sincere thanks and heartiest gratitude to **Dr. Shady H E Abdel Aleem** for his great guidance, helpful advice and encouragement during all stages of this research.

I would like to express my gratitude to **Assoc. Prof. Dr. Ahmed Ibrahim**, for his encouragement, helpful advice and the time he offered me during the research period.

Finally, my parents, my wife: you have always been there for me and have encouraged me to follow my dreams. I owe a lifelong debt for your patience and support and for maintaining a perfect environment for study and research.

## TABLE OF CONTENTS

| ACKNOWLEDGMENTi                                                           |
|---------------------------------------------------------------------------|
| TABLE OF CONTENTSii                                                       |
| LIST OF TABLESiv                                                          |
| LIST OF FIGURESv                                                          |
| LIST OF ABBREVIATIONSvii                                                  |
| LIST OF SYMBOLSviii                                                       |
| LIST OF PUBLICATIONSxii                                                   |
| ABSTRACTxiii                                                              |
| CHAPTER (1)<br>INTRODUCTION                                               |
| 1.1BACKGROUND11.2THESIS MOTIVATION31.3THESIS OBJECTIVE31.4THESIS OUTLINE4 |
| CHAPTER (2)<br>LITERATURE REVIEW                                          |
| <ul> <li>2.1 OVERVIEW OF DOUBLE-TUNED FILTER'S DESIGN</li></ul>           |
| CHAPTER (3)<br>SINGLE, DOUBLE TUNED FILTERS AND DESIGN EXPRESSIONS 10     |
| <ul> <li>3.1 OVERVIEW OF PASSIVE FILTERS</li></ul>                        |
| CHAPTER (4)<br>OPTIMIZATION ALGORITHM AND MODELING OF THE SYSTEM. 26      |
| 4.1OPTIMIZATION ALGORITHM264.1.1Overview26                                |

| 4.1.2 Non-Dominated Sorting Genetic Algorithm (NSGA-II) and its               |
|-------------------------------------------------------------------------------|
| Method of work27                                                              |
| 4.1.3 Features of Non-Dominated Sorting Genetic Algorithm (NSGA-II) 29        |
| 4.1.4 Summary                                                                 |
| 4.2 MODELING AND SIMULATION OF THE OPTIMIZATION                               |
| PROBLEM                                                                       |
| 4.2.1 Proposed System configuration                                           |
| 4.2.2 Analysis of the Proposed System in Uncompensated Case                   |
| 4.2.3 Optimization Objectives and Constraints                                 |
| CHAPTER (5)                                                                   |
| ANALYSIS RESULTS AND DISCUSSION                                               |
| 5.1 OPTIMIZATION ALGORITHM PROCEDURE                                          |
| 5.2 OPTIMIZATION RESULTS OF THE COMPENSATED SYSTEM                            |
| USING MULTI-ARM SINGLE-TUNED FILTER AND DAMPED                                |
| TYPE DOUBLE-TUNED FILTER41                                                    |
| 5.3 OPTIMIZATION RESULTS OF THE COMPENSATED SYSTEM                            |
| USING TWO DIFFERENT SCHEMES OF DAMPED TYPE                                    |
| DOUBLE-TUNED FILTER49                                                         |
|                                                                               |
| CONCLUSIONS 57                                                                |
| CONCLUSIONS                                                                   |
| 6.1 CONCLUSIONS                                                               |
| 6.2 FUTURE WORKS                                                              |
| REFERENCES                                                                    |
| Annendiy A. Motlah and af chiestives function file in THE ages of multi       |
| arm single-tuned filter 64                                                    |
|                                                                               |
| Appendix B: Matlab code of objectives function file in THE case of double-    |
| tuned filter                                                                  |
| Appendix C: Matlab code of constrainTs file66                                 |
| Appendix D: Matlab code of optimization problem                               |
| D.1. For multi-arm single-tuned filter                                        |
| D.2. For the 1 <sup>st</sup> configuration of damped type double-tuned filter |
| D.3. For 2 <sup>nd</sup> configuration of damped type double-tuned filter     |

## LIST OF TABLES

| Table 4.1: System's parameters in the uncompensated case                                                         | .35 |
|------------------------------------------------------------------------------------------------------------------|-----|
| Table 4.2: Values of current and voltage harmonics distortion                                                    | .36 |
| Table 5.1: Parameters of optimal design of Multi-arm STF and scheme 1                                            | .42 |
| Table 5.2: Power quality parameters of the compensated system in the case of         Multi-arm STF and scheme 1. | .47 |
| Table 5.3: Parameters of optimal filter of scheme1 and scheme 2                                                  | .50 |
| Table 5.4: Power quality parameters of the compensated system in the case of scheme 1 and scheme 2.              | .54 |

## **LIST OF FIGURES**

| Figure 1.1: Combination of distorted currents waveforms2                                                               |
|------------------------------------------------------------------------------------------------------------------------|
| Figure 2.1: Different schemes of the damped type double-tuned filter                                                   |
| Figure 3.1: Different configurations of shunt passive filters11                                                        |
| Figure 3.2: Configuration of the power system supplying linear and non-linear loads connected with single-tuned filter |
| Figure 3.3: Per-phase equivalent circuit of the power system connected with the STF.13                                 |
| Figure 3.4: Basic structure of single-tuned filter14                                                                   |
| Figure 3.5: Configuration of multi-arm single-tuned filter                                                             |
| Figure 3.6: The impedance-angular frequency characteristics of the multi-arm single-<br>tuned filter                   |
| Figure 3.7: Configuration of the power system supplying linear and non-linear loads connected with double-tuned filter |
| Figure 3.8: Per-phase equivalent circuit of the power system connected with the double-<br>tuned filter                |
| Figure 3.9: Basic configuration of double-tuned filter20                                                               |
| Figure 3.10: The series, parallel and total impedance-angular frequency characteristics of the double-tuned filter     |
| Figure 4.1: Example of pareto front plot27                                                                             |
| Figure 4.2: Schematic procedure of NSGA-II                                                                             |
| Figure 4.3: Flowchart of NSGA-II                                                                                       |
| Figure 4.4: Calculation of crowded distance                                                                            |
| Figure 4.5: Single-phase diagram of the test system                                                                    |
| Figure 4.6: Single-phase equivalent circuit of the test system                                                         |
| Figure 4.7: Configuration of the proposed system in the uncompensated case                                             |
| Figure 4.8: Individual current harmonic distortion in the uncompensated system36                                       |
| Figure 4.9: Individual voltage harmonic distortion in the uncompensated system37                                       |
| Figure 5.1: The optimization procedure flowchart40                                                                     |
| Figure 5.2: Configuration of multi-arm single-tuned filter                                                             |
| Figure 5.3: Configuration of scheme 142                                                                                |

| Figure 5.4: Pareto fronts of non-domination populations' results of the multi-objective optimization for multi-arm STF |
|------------------------------------------------------------------------------------------------------------------------|
| Figure 5.5: Pareto fronts of non-domination populations' results of the multi-objective optimization for scheme 1      |
| Figure 5.6: Impedance-angular frequency characteristics: (a) Multi-arm STF (b) scheme 146                              |
| Figure 5.7: Currents harmonic distortion after installation of the multi-arm STF and scheme 1                          |
| Figure 5.8: Voltages harmonic distortion after installation of the multi-arm STF and scheme 1                          |
| Figure 5.9: Configuration of scheme 250                                                                                |
| Figure 5.10: Pareto fronts of non-domination populations' results of the multi-objective optimization for scheme 1     |
| Figure 5.11: Pareto fronts of non-domination populations' results of the multi-objective optimization for scheme 2     |
| Figure 5.12: Impedance-angular frequency characteristics: (a) scheme 1 (b) scheme 2.                                   |
| Figure 5.13: Currents harmonic distortion after installation of scheme 1 and scheme 2.                                 |
| Figure 5.14: Voltages harmonic distortion after installation of scheme 1 and scheme 2.                                 |

## LIST OF ABBREVIATIONS

| CD   | Crowding distance                       |
|------|-----------------------------------------|
| DTF  | Double-tuned filter                     |
| GA   | Genetic algorithm                       |
| HVDC | High voltage direct current             |
| MOEA | Multi-objective evolutionary algorithms |
| NSGA | Non-dominated sorting genetic algorithm |
| STF  | Single-tuned filter                     |

## LIST OF SYMBOLS

| $f_m^{i+1}$              | m <sup>th</sup> objective function value of solution number $(i+1)$ in the set front        |
|--------------------------|---------------------------------------------------------------------------------------------|
| $f_m^{i-1}$              | m <sup>th</sup> objective function value of solution number ( <i>i</i> -1) in the set front |
| f <sup>max</sup>         | maximum value of the m <sup>th</sup> objective function in the set front                    |
| $f_m^{min}$              | minimum value of the m <sup>th</sup> objective function in the set front                    |
| $C_{f}$                  | Capacitance of the filter                                                                   |
| $C_1$                    | 1 <sup>st</sup> capacitance of the double-tuned filter                                      |
| $C_2$                    | 2 <sup>nd</sup> capacitance of the double-tuned filter                                      |
| $C_a$                    | 1 <sup>st</sup> capacitance of the multi-arm single-tuned filter                            |
| $C_b$                    | 2 <sup>nd</sup> capacitance of the multi-arm single-tuned filter                            |
| CIHD                     | Individual current harmonic distortion                                                      |
| DPF                      | Displacement power factor                                                                   |
| $h_r$                    | Order of the resonant frequency                                                             |
| i                        | Number of solution                                                                          |
| <i>i</i> distance        | Crowded distance                                                                            |
| <i>i</i> <sub>rank</sub> | Non-domination rank                                                                         |
| Ish                      | Current passed through the impedance of the system                                          |
| I <sub>Lh</sub>          | Harmonic current inserted into the system from nonlinear load                               |
| $I_{Fh}$                 | Harmonic current passed through the filter                                                  |
| $I_h$                    | Harmonic current                                                                            |
| $I_1$                    | Rms current at the fundamental harmonic.                                                    |

| j            | Total number of solutions in the set front                      |
|--------------|-----------------------------------------------------------------|
| $L_{f}$      | Inductance of the filter                                        |
| $L_{I}$      | 1 <sup>st</sup> inductance of the double-tuned filter           |
| $L_2$        | 2 <sup>nd</sup> inductance of the double-tuned filter           |
| La           | 1 <sup>st</sup> inductance of the multi-arm single-tuned filter |
| $L_b$        | 2 <sup>nd</sup> inductance of the multi-arm single-tuned filter |
| m            | number of objectives                                            |
| $m_p$        | Parallel resonance harmonic order                               |
| 0            | Mathematical notation that describes time complexity            |
| $P_t$        | Parent population                                               |
| $\Delta P_L$ | Transmission line power losses                                  |
| $\Delta P_F$ | Filter power losses                                             |
| $P_1$        | Fundamental harmonic active power                               |
| q            | Quality factor                                                  |
| $Q_f$        | Reactive power of the filter                                    |
| Qt           | Offspring population                                            |
| $R_{f}$      | Resistance of the filter                                        |
| $R_t$        | Resulted population                                             |
| $S_1$        | Fundamental harmonic apparent power                             |
| THDI         | Total harmonic distortion current                               |
| THDV         | Total harmonic distortion voltage                               |

| VIHD             | Individual voltage harmonic distortion                                       |
|------------------|------------------------------------------------------------------------------|
| $V_s$            | Line-to line rated voltage of the filter                                     |
| $V_{Lh}$         | Resulted harmonic voltage                                                    |
| Ζ                | Population size                                                              |
| $Z_{f}$          | Filter impedance                                                             |
| $Z_L$            | Load impedance                                                               |
| $Z_s$            | Source impedance                                                             |
| $Z_{sh}$         | Source harmonic impedance                                                    |
| $Z_{Lh}$         | Linear load harmonic impedance                                               |
| $Z_{Fh}$         | Filter harmonic impedance                                                    |
| Z <sub>FLh</sub> | Parallel equivalent impedance of filter's impedance and the load impedance   |
| $\omega_f$       | Fundamental harmonic angular frequency                                       |
| $\omega_p$       | Parallel resonant frequency                                                  |
| $\omega_s$       | Series resonance angular frequency                                           |
| ω <sub>a</sub>   | 1 <sup>st</sup> resonance angular frequency of multi-arm single-tuned filter |
| ω <sub>b</sub>   | 2 <sup>nd</sup> resonance angular frequency of multi-arm single-tuned filter |
| $\omega_1$       | 1 <sup>st</sup> resonance angular frequency of double-tuned filter           |
| $\omega_2$       | 2 <sup>nd</sup> resonance angular frequency of double-tuned filter           |

### LIST OF PUBLICATIONS

M. A. Fahmy, A. M. Ibrahim, M. E. Baici and S. H. E. A. Aleem, "Multi-objective optimization of double-tuned filters in distribution power systems using Non-Dominated Sorting Genetic Algorithm-II," 2017 10th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 2017, pp. 195-200.