

Improvement of Antimicrobial Efficiency of Some Microorganisms through Synthesizing Nanoparticles

Ph.D. Thesis Submitted By Shimaa Abd Elaziz Ahmed Attya

B.Sc., in Microbiology (2006) Faculty of Science, Ain Shams University M.Sc., in Microbiology (2013) Faculty of Science, Ain Shams University

Supervisors

Dr. Nagwa Ahmed Abd-Allah

Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University.

Dr. Nevin Ahmed Ibrahim

Lecturer Doctor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University.

Dr. Amr Abd Elmoneim El-Waseif

Lecturer Doctor of Microbiology, Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo

> Microbiology Department Faculty of Science Ain Shams University (2018)

Improvement of Antimicrobial Efficiency of Some Microorganisms through Synthesizing Nanoparticles

Protocol of Ph.D. Thesis submitted by Shimaa Abd Elaziz Ahmed Attya

B.Sc., in Microbiology (2006) Faculty of Science, Ain Shams University M.Sc., in Microbiology (2013) Faculty of Science, Ain Shams University

Supervisors

Prof. Dr. Nagwa Ahmed Abd-Allah

Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University **Dr. Nevin Ahmed Ibrahim** Lecturer Doctor of Microbiology,

Microbiology Department, Faculty of Science, Ain Shams University.

Dr. Amr Abd Elmoneim El-Waseif

Lecturer Doctor of Microbiology, Microbiology Department, Faculty of Science, Al-Azhar University (Boys), Cairo

Examination committee

Prof. Dr. Nagwa Ahmed Abd-Allah Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University

Prof. Dr. Hoda Hassan Abo-Ghalia

Professor of Microbiology, Botany Department, Faculty of Science (Girls), Ain Shams University

Prof. Dr. Essam Mohammed Ahmed Abd El-Rahman

Professor of Microbiology, Chemistry of Natural and Microbial Products Department, National Research Center.

Date/Approval Date/University Council Approved//

صدق الله العظيم سورة طه الأية رقم (114)

ACKNOWLEDGEMENT

Firstly and sincere thanks should be submitted to **Allah**, who gave me everything in my life and his kind continuous support to me, surpassing all the obstacles I faced, and gave me the strength to worship. By the grace of **Allah**, this research work has been accomplished.

I would also like to acknowledge and express my gratitude to the following people for their great support and contributions to finish up of this research:

The words cannot express enough my deepest thanks to my second mother *Dr. Nagwa Ahmed Abdallah* Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University, for her supervision, encouragement, valuable advices and unlimited support during this work. She always has time for questions and discussions. I am really lucky being one of her students.

I wish to express my greatest thanks and respect to $\mathcal{D}r$. *Nevin Ahmed Ibrahim* Lecturer of microbiology, Microbiology Departement, Faculty of Science, Ain Shams University, for her supervision, support, helpful manner and honest advices throughout this work.

I would like to express my deepest thanks, gratitude and appreciation to *Dr. Amr Abd Elmoneim El-Waseif* Lecturer of microbiology, Microbiology Departement, Faculty of Science (Boys), Al-Azhar University (Cairo), who suggested the topic of this work, Honestly, He did not spare any effort or time to guide and helps me with his valuable advices and precious suggestions especially during his supervision on the practical part to finish this study. I am obliged and thankful to my colleagues for their sincere help and cooperation and their pleasant fellowship. I am also deeply grateful to faculty of Science, Ain Shams University for providing the facilities necessary for carrying out this study.

My great thanks to *Dr. Dina Hatem Riad* at microbiology Department, faculty of science, Ain shams university especially for her kind help and providing me with the actinomycete strains used in this thesis.

Also, thanks to all my sincere colleagues of Chemistry Administration especially **Trace Element Lab** for their kind dealings and sincere cooperation.

I cannot find the words that express my appreciation and gratitude to my family, especially my mother. her love, care and believe in me were my strong motive for finishing this work.

With the deepest gratitude I wish to thank every person who has come into my life and support me through their presence.

Shimaa Abd Elaziz

<u>Dedication</u>

A special Dedication to the soul of my father and very special dedication to my great " Mother " for her Care, Support and believe in me "Dad, I wish you could be with me and Mom, without you I

would be nothing "

This thesis has not been previously submitted for any degree at this or any other university

Signed

Shimaa Abd Elaziz Ahmed Attya

CONTENTS

	page
ABSTRACT	1
INTRODUCTION	2
AIM OF THE WORK	5
REVIEW OF LITERATURE	6
1- Microbial production of secondary metabolites	6
2- Antibiotics	7
2-1- Definitions of antibiotics	7
2-2- Background on antibiotics	7
3- Fungi	9
4- Actinomycetes	11
5- Clavulanic acid	15
6- Holomycin	18
7- Growth conditions and Nutritional requirements for	18
secondary metabolites Production	-
8- Antibiotic action and resistance	24
9- Importance of Nanotechnology	26
10- Metallic nanoparticles	
10-1- Industerial origin of metallic nanoparticles	
11- Synthesis of nanoparticles	31
12- Biological nanoparticles	32
13- Silver nanoparticles	
13-1- Silver nanoparticles and antimicrobial activity	
MATERIALS AND METHODS	
1- Materials	39
1-1- Microbiological media	39
1-2- Reagents	
1-2-1- Reagents used for Gram stain	43
1-2-2- Reagents for molecular techniques	43
1-2-2-1- Stock solutions and buffers of molecular	43
techniques	43
1-2-2-Gels and stains	
1-2-3-Reagents for Thin Layer Chromatography (TLC)	
plate	
2-Method	44

2-1Microorganisms	44	
2-1-1- Screening the antimicrobial activities of	45	
Actionmycete and fungal isolates		
2-2-Test microorganisms		
2-2-1- Agar well diffusion methods	46	
2-3- Synthesis of silver nanoparticles	47	
2-3-1- Synthesis of silver nanoparticles using the selected	47	
Actinomycete isolates		
2-3-2- Synthesis of silver nanoparticles using the most	48	
potent fungal isolate		
2-4-Identification of the selected Actinomycetes isolate	49	
2-4-1-Conventional identification	49	
2-4-1-1-Morphological and cultural characteristics	49	
2-4-1-2-Cell wall analysis	49	
2-4-1-2-1-Detection and determination of DAP-isomers	49	
2-4-2-Molecular identification	50	
2-4-2-1-Extraction of genomic DNA	50	
2-4-2-2- PCR amplification of partial 16S rDNA	51	
2-4-2-3- DNA sequencing, Blast identity and phylogenetic		
tree		
2-5- Characteriazation of the silver nanoparticles	52	
produced by Streptomyces clavuligerus and Trichoderma		
harzianum	53	
2-6- Effect of some cultural and environmental conditions		
of the activity of the antimicrobial agent(s) produced by		
Streptomyces clavuligerus		
2-6-1- Fermentation media	53	
2-6-2- Nitrogen sources	54	
2-6-3 Different concentrations of urea	54	
2-6-4- Carbon sources	55	
2-6-5- Different starch concentrations		
2-6-6- Incubation periods	56	
2-6-7- Inoculum sizes		
2-6-8- Incubation temperatures		
2-6-9- Different agitation speeds		
2-6-10- Varying the initial pH values		

2-7- Improvement of antimicrobial activity of <i>Streptomyces</i>	58
<i>clavuligerus</i> through synthesized nanoparticles	
2-8- Production, Extraction and purification of the	59
antimicrobial fraction(s) produced by streptomyces	
clavuligerus	
2-8-1- Production	59
2-8-2- Extraction	59
2-8-2-1- Paper-disc diffusion method for detection of the	60
antimicrobial activity of the extract	
2-8-3-Thin Layer Chromatography (TLC) Bio autography	60
2-8-4- Purification of the antimicrobial fraction(s)	61
2-8-5- Characterization of the pure antimicrobial	63
compound produced by locally isolated strain	
2-8-5-1- Ultraviolet spectrum (UV) of the antimicrobial	63
compound	
2-8-5-2- Infrared spectrum (IR) of the antimicrobial	63
compound	
2-8-5-3- Mass Spectrum of the antimicrobial compound	
2-8-5-4- Preparative TLC was performed to compare the	64
sample extracted with standard clavulanic acid or	
clavulanate potassium (Eipico)	
RESULTS	65
1- Screening of the antimicrobial activity of some	65
actinomycete isolates	
2- Synthesis of silver nanoparticles by actinomycete isolates	68
3- Screening for the antimicrobial activity of some fungal	71
isolates	
4- Synthesis of silver nanoparticles by Fungal isolate	
5- Conventional identification of the actinomycete isolates 2	75
5-1- Morphological characteristics	75
6- Cell wall hydrolysis	77
7- Molecular identification of the <i>Streptomyces spp</i> .	
7-1- PCR and DNA sequencing of genomic DNA	
7-2- Blast identity and phylogenetic tree construction	77

8- Characterization of the silver nanoparticles produced	81	
by Streptomyces clavuligerus		
8-1 Ultraviolet (UV) spectrum of the silver nanoparticles	81	
8-2- FTIR spectrum of the silver nanoparticles	83	
8-3- Transmission Electron Microscopy (TEM) of the	85	
silver nanoparticles		
9- Characterization of silver nanoparticles produced by <i>Trichoderma harzianum</i> AUMC 5408	88	
9-1- Ultraviolet (UV) spectrum of silver nanoparticles	88	
9-2- FTIR spectrum measurements of silver nanoparticles	90	
9-3- Transmission Electron Microscopy of silver	92	
nanoparticles		
10- Effect of some cultural and environmental	95	
conditions on the activity of the antimicrobial		
agent(s) produced by <i>Streptomyces clavuligerus</i>		
10-1- Fermentation media	95	
	<u>95</u> 98	
10-2- Nitrogen sources10-3- Different concentrations of urea	<u>98</u> 103	
10-4- Carbon sources	<u>106</u> 110	
10-5- Different starch concentrations		
10-6- Incubation periods		
10-7- Inoculum sizes		
10-8 Incubation temperatures		
10-9- Different agitation speeds		
10-10- Varying the initial pH values		
11- Improvement of antimicrobial activity of <i>Streptomyces</i>		
clavuligerus through synthesized nanoparticles		
12-Production, extraction and purification of the	131	
antimicrobial fraction(s) produced by streptomyces		
clavuligerus		
12-1- Production	131	
12-2-Extraction using different solvents	131	
12-3- Extraction using ethyl acetate	134	
12-4- Bio autography of Thin Layer Chromatography	134	
(TIC)		
12-5-Purification of the antimicrobial fraction(s)		
12-6- Prediction of chemical formula of the purified		
antimicrobial fraction(s)		

12-6-1- Ultraviolet Spectrum (UV) of the antimicrobial compound(s)	136
12-6-2- Infrared Spectrum (IR) of the antimicrobial compound(s)	138
12-6-3- Mass Spectrum of the antimicrobial compound(s)	140
12-6-4- Preparative Thin Layer Chromatography (TLC) was performed to compare the sample extracted with standard	142
DISCUSSION.	144
SUMMARY.	164
REFERENCES.	168
ARABIC SUMMARY	
ARABIC ABSTRACT	

List of Tables

Table	Titles	Page
number		
Table (1)	Antimicrobial activity of Actinomycete isolates	67
Table (2)	Antimicrobial activity of the synthesized silver	70
	nanoparticles produced by the actinomycete	
	isolate no.2 and actinomycete isolate no.3	
Table (3)	Antimicrobial activity of fungal isolates	72
Table (4)	Effect of using different fermentation media on	96
	the activity of the antimicrobial agent(s)	
	produced by Streptomyces clavuligerus.	
Table (5)	Effect of different nitrogen sources on the	101
	activity of the antimicrobial agent(s) produced	
	by Streptomyces clavuligerus.	
Table (6)	Effect of different concentrations of urea on the	104
	activity of the antimicrobial agent(s) produced	
	by Streptomyces clavuligerus.	
Table (7)	Effect of different carbon sources on the activity	108
	of the antimicrobial agent(s) produced by	
	Streptomyces clavuligerus.	
Table (8)	Effect of different starch concentrations on the	111
	activity of the antimicrobial agent(s) produced	
	by Streptomyces clavuligerus.	
Table (9)	Effect of different incubation periods on the	114
	activity of the antimicrobial agent(s) produced	
	by Streptomyces clavuligerus.	117
Table (10)	Effect of different inoculum sizes on the activity	117
	of the antimicrobial agent(s) produced by	
Table (11)	Streptomyces clavuligerus.	120
Table (11)	Effect of different incubation temperatures on the activity of the antimicrobial acout(a)	120
	the activity of the antimicrobial agent(s)	
Table (12)	produced by <i>Streptomyces clavuligerus</i> .	123
Table (12)	Effect of different agitation speeds on the activity of the antimicrobial agent(s) produced	123
	activity of the antimicrobial agent(s) produced by <i>Streptomyces clavuligerus</i> .	
	by streptomyces ciuvuligerus.	

Table (13)	Effect of different initial pH values on the	126
	activity of the antimicrobial agent(s) produced	
	by Streptomyces clavuligerus.	
Table (14)	Antimicrobial activity of the antimicrobial	129
	compound separated and mixed with different	
	concentrations of AgNPs obtained from	
	Streptomyces clavuligerus	
Table (15)	Extraction of antimicrobial compound(s)	132
	produced by Streptomyces clavuligerus using	
	different organic solvents.	
Table (16)	Bio autography of TLC sheets using extracted	135
	solution of streptomyces clavuligerus	

List of Figures

Figure number	Titles	page
Figure (1)	Phylogenetic tree of isolate no.2	80
Figure (2)	UV-Vis Spectra absorbance of synthesis AgNPs by supernatant of <i>Streptomyces</i> <i>clavuligerus</i> .	82
Figure (3)	FTIR analysis of silver nano-particles synthesized by supernatant of <i>Streptomyces</i> <i>clavuligerus</i>	84
Figure (4)	UV-Vis Spectra absorbance of synthesis AgNPs by mycelium of <i>Trichoderma</i> <i>harzianum</i>	89
Figure (5)	FTIR analysis of AgNPs synthesized by mycelium of <i>Trichoderma harzianum</i>	91
Figure (6)	Effect of different fermentation media on the activity of the antimicrobial agent(s) produced by <i>Streptomyces clavuligerus</i> against <i>E. coli</i> , <i>S. aureus</i> and <i>C. albicans</i> .	97
Figure (7)	Effect of different nitrogen sources on the activity of the antimicrobial agent(s) produced by <i>Streptomyces clavuligerus</i> against <i>E. coli</i> , <i>S. aureus</i> and <i>C. albicans</i> .	102
Figure (8)	Effect of different concentration of urea on the activity of the antimicrobial agent(s) produced by <i>Streptomyces clavuligerus</i> against <i>E. coli, S. aureus</i> and <i>C. albicans</i> .	105
Figure (9)	Effect of different carbon sources on the activity of the antimicrobial agent(s) produced by <i>Streptomyces clavuligerus</i> . against <i>E. coli</i> , <i>S. aureus</i> and <i>C. albicans</i> .	109
Figure (10)	Effect of different starch concentration on the activity of the antimicrobial agent(s) produced by <i>Streptomyces clavuligerus</i> against <i>E. coli, S. aureus</i> and <i>C. albicans</i> .	112