

DESIGN AND IMPLEMENTATION OF A MULTI-BAND HIGH EFFICIENCY ENVELOPE ELIMINATION AND RESTORATION POLAR TRANSMITTER FRONT-END

By

Ahmed Mamdouh Metwally Mansour

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

DESIGN AND IMPLEMENTATION OF A MULTI-BAND HIGH EFFICIENCY ENVELOPE ELIMINATION AND RESTORATION POLAR TRANSMITTER FRONT-END

By Ahmed Mamdouh Metwally Mansour

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in Electronics and Communications Engineering

Under the Supervision of

Dr. Ahmed Nader Mohieldin

Dr. Faisal A. Elseddeek

.....

Associate Professor Electronics and Communication Engineering Department Faculty of Engineering, Cairo University Associate Professor Electronics and Communication

Engineering Department Faculty of Engineering, Cairo University

Dr. Mohamed M. Aboudina

Associate Professor Electronics and Communication Engineering Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

DESIGN AND IMPLEMENTATION OF A MULTI-BAND HIGH EFFICIENCY ENVELOPE ELIMINATION AND RESTORATION POLAR TRANSMITTER FRONT-END

By

Ahmed Mamdouh Metwally Mansour

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in Electronics and Communications Engineering

Approved by the Examining Committee

Dr. Ahmed Nader Mohieldin, Thesis Main Advisor

Prof. Mohamed Reyad El-Ghoneimy, Internal Examiner

Dr. Mohamed Ahmed El-Nozahi, External Examiner Associate Professor, Ain Shams University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2018

Engineer's Name:	Ahmed Mamdouh Metwally Mansour	
Date of Birth:	15/11/1990	and the second second
Nationality:	Egyptian	
E-mail:	eng.ahmed.mamdouh.mansour@gmail.com	a ar
Phone:	01012314945	1 C
Address:	Haram- Giza	
Registration Date:	1/10/2013	
Awarding Date:	/2018	
Degree:	Master of Science	
Department:	Electronics and Communications Engineering	
Supervisors:		
-	Dr. Ahmed Nader Mohieldin	
	Dr. Faisal A. Elseddeek	
	Dr. Mohamed M. Aboudina	
Examiners:		
	Dr. Mohamed Ahmed El-Nozahi	(External examiner)
	Faculty of engineering - Ain Shams university	
	Prof. Mohamed Reyad El-Ghoneimy Dr.	(Internal examiner)
	Ahmed Nader Mohieldin	(Thesis main advisor)

Title of Thesis:

Design and Implementation of a Multi-Band High Efficiency Envelope Elimination and Restoration Polar Transmitter Front-End

Key Words:

Power amplifier; Multi-band; Polar transmitter; Envelope elimination and restoration; Supply modulator

Summary:

In this work, the design and implementation of a multi-band polar transmitter front-end has been introduced. The transmitter circuit is implemented using a 130nm standard CMOS technology. To the best of the author's knowl-edge, this is the first transmitter front-end design that can cover frequency range from 0.75 up to 2.2GHz and yet compatible with most of the modern communication standards.

Acknowledgements

All thanks go to Almighty Allah for giving me patience and strength to complete this work. His continuous help and mercy is always with me throughout every stage in my life. Any success achieved during my life only comes from Allah.

I would like to sincerely thank my supervisors Dr, Ahmed Nader, Dr Faisal Elseddeek and Dr. Mohamed Aboudina. They gave me continuous support, guidance, passion and encouragement. I appreciate all their contributions of time, support and ideas.

I would also like to express my gratitude to Dr. Serag Eldeen Habib and Dr. Mohamed El-Nozahi for facilitating my work through providing a decent well-equipped testing environment for validation.

Many thanks go to my colleagues at CCSL Lab, Cairo University, for their knowledge, help and support.

Finally, i want to thank my parents and my sister for standing by my side, helping me at every stage of my personal life, and energizing me spiritually.

Table of Contents

A	Acknowledgements i		
Ta	Table of Contentsii		
Li	st of '	Tables	vi
Li	st of]	Figures	vii
Li	st of S	Symbols and Abbreviations	X
Al	bstra	ct	xi
1	INT 1.1 1.2	GRODUCTION Overview Organization of the thesis	1 1 2
2	PO 2.1 2.2	WER AMPLIFIER PERFORMANCE METRICS AND BASIC CLASSES Introduction	3 3 3 3 4
	2.3	2.2.3Multi Standard SupportPower Amplifier Specifications2.3.1Output Power2.3.2Efficiency2.3.3Power Gain2.3.4Linearity Measurements2.3.4.1Compression Point (P_1dB) 2.3.4.2Intermodulation	4 5 5 5 6 6 6
	2.4	2.3.4.2 Adjacent Channel Leakage Ratio 2.3.5 Error Vector Magnitude Power Amplifier Classes	7 9 9 10 10 10 12 12 12
	2.5	2.4.2 Switching Wode Fower Amplifiers 2.4.2.1 Class-D 2.4.2.2 Class-E 2.4.3 Class-F 2.4.4 Comparison Between Different Power Amplifier Classes Summary	12 13 13 14 14 15

3	POV	VER AMPLIFIER PERFORMANCE ENHANCEMENT TECHNIQUES	16
	3.1	Efficiency Enhancement Techniques	6
		3.1.1 Slicing Technique	6
		3.1.2 Load Modulation Technique	7
		3.1.3 Envelope Tracking Technique	7
		3.1.4 Doherty Power Amplifier	8
	3.2	Linearization Techniques	8
		3.2.1 Envelope Elimination and Restoration Technique	9
		3.2.2 Feed Forward Technique	9
		3.2.3 Out-phasing Technique [29]	0
		3.2.4 Digital Pre-Distortion Technique	1
	3.3	Summary	1
4	FN	FI OPE FI IMINATION AND RESTORATION TECHNIOUE 2	2
-	<u>1</u>	Challenges Of EER System Design 2	2 2
	7.1	4.1.1 Design Requirements For The Supply Modulator 2	$\frac{2}{2}$
		4.1.1 Hybrid Supply Modulator	23
		4.1.1.2 Dual Mode Supply Modulator	3 4
		4 1 1 3 Hybrid Supply Modulator With Dual Switch 2	4
		4.1.2 Difference Between Supply Modulator For EER and Supply Mod-	•
		ulator For ET 2	6
		4.1.3 Mismatch Between Phase Signal And Amplitude Signal 2	6
	4.2	Multi Mode Multi Band Power Amplifiers	.7
		4.2.1 Wide-Band Power Amplifiers	7
		4.2.2 Configurable Power Amplifiers	8
	4.3	Summary	9
5	PR(POSED MULTLEAND CLASS.E POWER AMPLIEIER 3	n
5	5 1	Class-E Power Amplifier Basic Structure	U 1
	5.1	Proposed Class-E Power Amplifier	2
	5.2	5.2.1 Class-E Design Equations	23
		5.2.1 Class-E Design Equations	5 Л
		5.2.2 Solving The Proposed Class-E Osing Conzalez methodology 5 5.2.3 Proposed Design Methodology 3	- -
		5.2.5 Troposed Design Wethodology	5
		5.2.3.2 Maximizing Total Harmonic Distortion 3	6
		5.2.3.3 Applying The Solution 3	7
	5.3	Proposed Multi-Band Class-E	3
		5.3.1 Antenna Switch Basic Operation	3
		5.3.2 Model Of The Antenna Switch	4
		5.3.3 Modeling Of The Multi-band Class-E	5
		5.3.4 Transistor Sizing	7
	5.4	Simulation Results	8
		5.4.1 Transient Simulation	8
		5.4.2 Harmonic Distortion and Efficiency	1
		5.4.3 Performance Summary	3
	5.5	Design Fabrication	3
		5.5.1 Problems During Testing	3

		5.5.2	Plan For Enhancing The Testing Setup	53
		5.5.3	Output Spectrum	54
		5.5.4	Summary	55
6	PRO)POSE	D WIDE-BAND SUPPLY MODULATOR	56
	6.1	Propos	sed Enhanced Supply Modulator Architecture	56
	6.2	Analy	tical Design of The Proposed Supply Modulator	57
		6.2.1	Estimating switching frequency of the replica	58
		6.2.2	Design considerations for the buck converter	59
		6.2.3	Design parameters for replica circuit	59
			6.2.3.1 First step	59
			6.2.3.2 Second step	60
	6.3	Circui	t Implementation of The Proposed Design	63
	6.4	Simula	ation Results	65
		6.4.1	Two Tone Test	65
		6.4.2	Linear stage contribution on harmonic distortion	67
		6.4.3	Efficiency Test	69
		6.4.4	Transient Simulation	70
		6.4.5	Supply modulator Comparison With State-Of-The-Art	71
	6.5	Simula	ation Results of EER System	72
		6.5.1	Transient Simulation	72
		6.5.2	Efficiency and IM3 Test	72
		6.5.3	LTE signal test	73
		6.5.4	Comparison With State-Of-The-Art	77
			6.5.4.1 Comparison With Multi-Band PAs	77
			6.5.4.2 Comparison With State-Of-The-Art PAs Supporting	
			Modern Communication Systems	77
	6.6	Summ	ary	80
7	IMF	PLEME	NTATION AND TESTING OF CLASS D POWER AMPLIFIER	81
	7.1	Propos	sed Class-D Architecture	81
		7.1.1	Replica Circuit Design	82
	7.2	Simula	ation Results Of The Proposed Class-D	83
	7.3	Measu	rement Results Of The Proposed Class-D	86
		7.3.1	Chip Micrograph and PCB Design	86
		7.3.2	Measurements Captured From The Test Chip	87
		7.3.3	Problems During Measurement Process	87
	7.4	Summ	ary	90
8	COI	NCLUS	IONS AND FUTURE WORK	91
	8.1	Future	Work	91
Ar	opend	lix A N	Aathematical Derivations	98
1	A.1	Wolfa	rm Mathematica Derivations For The Proposed Wide-Band Output	·
		Netwo	rk Admittance	99

A.2	Wolfarm Mathematica Derivations For The Proposed Wide-Band Output	
	Network Admittance After Adding The effect of Parasitic Resistors And	
	Antenna Switches	103

List of Tables

2.1	Specifications of basic PA classes	15
5.1	Normalized complex load admittance as proposed by [42]	33
5.2	Required design parameters for maximum efficiency wide-band class E	
	amplifier	42
5.3	Required design parameters for enhanced total harmonic distortion of	
	wide-band class E amplifier	43
5.4	Required design parameters for multi-band class E PA	47
5.5	Performance summary of the multi-band class-E PA	53
6.1	Initial component values estimated from approximate solution	61
6.2	power budget	69
6.3	Supply modulator comparison with state-of-the-art	71
6.4	Performance summary and comparison with state-of-the-art multi-band	
	PAs	77
6.5	Performance summary and comparison with state-of-the-art PAs support-	
	ing modern communication standards	79

List of Figures

2.1	Gain compression representation, where output power saturates at high	
	input power levels	7
2.3	Spectral regrowth phenomena [16]	7
2.2	Intermodulation products due to applying two tones at the input of the PA	8
2.4	Adjacent channel leakage ratio mask	8
2.5	Error vector magnitude representation	9
2.6	Effect of knee voltage on swing [16].	11
2.7	Simple circuit of linear power amplifier classes, A, B, AB, and C.	11
2.8	Simple circuit of class-D PA.	13
2.9	simple circuit representation of Class-E power amplifier	14
2.10	simple circuit representation of Class-F power amplifier	14
2 1	Segmentation technique used for linear mode DAs to reduce quiescent	
5.1	segmentation technique used for linear mode PAs to reduce quiescent	16
2.2	Tranship sutnut network for enhancing linearity	10
3.Z	Plack discourse of survey and the structure	17
3.3 2.4	Block diagram of envelope tracking system	1/
3.4	Block diagram of donerty power amplifier [26]	19
3.5	Block diagram of envelope elimination and restoration system	20
3.6	Block diagram of feed-forward power amplifier [28]	20
3.7	Block diagram of out phasing amplification concept [29]	21
4.1	Block diagram of hybrid supply modulators	24
4.2	block diagram of dual mode supply modulator [37]	25
4.3	Block diagram of hybrid supply modulator with dual switch [38]	25
4.4	PSD is drawn for different values of delay mismatch between amplitude	
	and phase signals [40]	26
4.5	Block diagram of a multi-tab configurable PA [36]	29
5.1	Polar transmitter system	31
5.2	Proposed Dual-band class E	31
5.3	Basic structure of class-E power amplifier	32
5.4	Proposed Class E Power Amplifier	33
5.5	Proposed Class-E output network	35
5.6	Flow chart for optimizing efficiency	36
5.7	Flow chart for enhancing THD	37
5.8	Simulated efficiency drawn in the $C_{1,2}$ domain at 1400MHz \ldots	38
5.9	Simulated efficiency drawn in the $C_{1,2}$ domain at 1800MHz \ldots	39
5.10	Simulated efficiency drawn in the $C_{1,2}$ domain at 2200MHz	39
5.11	Simulated THD drawn in the $C_{1,2}$ domain at 1400MHz	40
5.12	Simulated THD drawn in the $C_{1,2}$ domain at 1800MHz	40
5.13	Simulated THD drawn in the $C_{1,2}$ domain at 2200MHz	41
5.14	Efficiency and THD after optimizing the efficiency	41
5.15	Efficiency and THD after optimizing the THD	42
5.16	Proposed configurable wide band class E power amplifier	44
5.14 5.15 5.16	Efficiency and THD after optimizing the efficiency	41 42 44

5.17	Antenna switch used for large signal switching applications	45
5.18	Basic antenna switch model consisting of two stacked NMOS transistors	45
5.19	Intrinsic capacitance of antenna switch in case switch is on its off mode .	46
5.20	Multi–band PA after adding the model of antenna switch to model the	
	effect of the powered down PA	47
5.21	Transistor sizing	48
5.22	Transient simulation of the drain voltage and drain current	49
5.23	Differential voltage between gate and source/drain of the antenna switch	49
5.24	Differential voltage between base and source/drain of the antenna switch	50
5.25	Harmonic distortion of the multi-band class-E	50
5 26	Efficiency and output power versus frequency	51
5.20	Power added efficiency and output power when PA1 is active	52
5 28	Power added efficiency and output power when PA2 is active	52
5.20	Chip micrograph of the multi-band class-F power amplifier	54
5.27	Output spectrum of Case_E PA at 1GHz	54
5 30	Test PCB for the multi hand class-E PA	55
5.50		55
6.1	Architecture of the proposed hybrid supply modulator	57
6.2	Output voltage ripples of replica circuit	59
6.3	Delay of the comparator versus amplitude of the input	60
6.4	Falling step response of replica circuit and buck converter for 5MHz BW.	61
6.5	Rising step response of replica circuit and buck converter for 5MHz BW.	62
6.6	Circuit implementation of comparator in replica circuit	63
6.7	Circuit implementation of the linear stage	64
6.8	AC response of the linear stage	64
6.9	IM3 versus frequency for proposed and conventional design	66
6.10	IM3 across different process corners.	66
6.11	A 2MHz sine wave with 1.8Vpp amplitude.	67
6.12	HD of a 2MHz sine wave with 1.8Vpp amplitude.	68
6.13	Efficiency and power consumption of the linear stage	68
6.14	Efficiency versus output power.	69
6.15	Currents through the linear path and switching path.	70
6.16	Comparator output.	70
6.17	Testing structure of the EER polar transmitter	72
6.18	Envelope signal and the corresponding output signal from the polar trans-	
	mitter	73
6.19	Efficiency and IM3 versus frequency	73
6.20	Simulation environment for the LTE test	74
6.21	PSD of the proposed supply modulator for 5MHz LTE signal	74
6.22	PSD of the proposed supply modulator for 10MHz LTE signal	75
6.23	PSD of the proposed supply modulator for 20MHz LTE signal	75
6.24	Scatter plot of a 160AM signal	76
6.25	EVM drawn versus efficiency for different publications	78
6.26	EVM drawn versus output power for different publications	78
6.27	Efficiency drawn versus output power for different publications	79
0.27	aranni versus suspar power for anterent publications	,)
7.1	Block diagram of the proposed class-D PA	82

7.2	Implementation of the proposed replica circuit	82
7.3	Layout of the proposed class-D PA	83
7.4	Efficiency Versus output power of class-D	84
7.5	Transient simulation of a 20MHz signal at the output of the proposed	
	class-D PA	84
7.6	Spectrum of the 20MHz signal at the output of the proposed class-D PA .	85
7.7	Chip micrograph of the proposed class-D and replica circuit	86
7.8	Testing environment for the prototype class-D	87
7.9	Scope plot of a 23MHz sine wave	88
7.10	Scope plot of a 8MHz sine wave	88
7.11	Scope plot of a 8MHz Triangular wave	89
7.12	Scope plot of a 8MHz square wave	89
7.13	Output spectrum from class-D PA	90
A.1	Proposed class E output network	99
A.2	Proposed Multi-Band class E output network	103

List of Symbols and Abbreviations

η_D	Drain Efficiency
η_{PAE}	Power Added Efficiency
$\eta_{overall}$	Over All Efficiency
Pout	Output Power
P _{in}	Input Power
$P_1 dB$	One dB compre
ACLR	Adjacent Channel Leakage Ratio
EA	Envelope Amplifier
EER	Envelope Elimination and Restoration
EVM	Error Vector Magnitude
GMSK	Gaussian Minimum Phase Shift Keying
HF	High Frequency
LTE	Long Term Evolution
MF	Medium Frequency
MMMB	Muti-Mode Multi-Band
MEMS	Microelectromechnical Systems
OFDM	Orthogonal Frequency Division Multiplexing
PA	Power Amplifier
PAPR	Peak to Average Power Ratio
RFPA	Radio Frequency Power Amplifier
SC-FDMA	Single Carrier Frequency Division Multiple Access
SDR	Software Defined Radio
SNR	Signal to Noise Ratio
SoC	System on Chip
WCDMA	Wideband Code Division Multiple Access
Wi-Fi	Wireless Fidelity
WiMAX	Worldwide Interoperability for Microwave Access

Abstract

Due to the continuous advance in modern communication systems, the need for developing new systems supporting multiple communication standards on one device becomes a crucial requirement. The challenge becomes severe when the required system is installed on a hand-held device which uses a battery with limited capacity as a power source. One of the most challenging blocks in the design of this system, is the power amplifier (PA) which contributes with the majority of power consumption of any transceiver system. According to this, the design of PA should be meeting all the required specification with maximum efficiency.

This work proposes a new design for a multi-standard high efficiency PA. In this design polar transmitter architecture is utilized using envelope elimination and restoration (EER) technique. In EER technique the modulated signal is divided into two signals. First signal is the amplitude or envelope signal, while the other signal is the phase signal. The phase signal is applied to a highly efficient nonlinear PA, and the amplitude signal is applied through a supply modulator which tracks the envelope signal.

In order to satisfy the wide coverage of multiple frequencies, the proposed PA uses a wide-band output matching network. In order to increase the bandwidth coverage, two power amplifiers have been integrated and combined using antenna switches for the band select capability. The proposed concept has been proven through design equations. Design has been implemented and simulation results have been reported. A prototype design has been fabricated and measurements have been performed to verify the functionality and performance of the proposed design.