PHYTOCHEMICAL AND BIOLOGICAL STUDIES OF *Terminalia laxiflora* LEAVES GROWING IN EGYPT

By

TAHA FARAG TAHA SAAD

THESIS
Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences
(Biochemistry)

Department of Biochemistry
Faculty of Agriculture
Cairo University
EGYPT

2018
APPROVAL SHEET

PHYTOCHEMICAL AND BIOLOGICAL STUDIES OF *Terminalia laxiflora* LEAVES GROWING IN EGYPT

M.Sc. Thesis
In
Agric. Sci.
(Biochemistry)

By

TAHA FARAG TAHA SAAD

APPROVAL COMMITTEE

Dr. Ahmed Ibrahim El-Diwany ..
Researcher Professor of Chemistry of Natural and Microbial Products, NRC

Dr. Emam Abdel-mobdy Abdel-Rahim
Professor of Biochemistry, Fac. Agric., Cairo University

Dr. Mohamed Saad Abdel-Lattif ..
Associate Professor of Biochemistry, Fac. Agric., Cairo University

Dr. Hassan Mohamed Salem ...
Professor of Biochemistry, Fac. Agric., Cairo University

Date: 31 / 10 / 2018
SUPERVISION SHEET

PHYTOCHEMICAL AND BIOLOGICAL STUDIES OF *Terminalia laxiflora* LEAVES GROWING IN EGYPT

M.Sc. Thesis

In
Agric. Sci.
(Biochemistry)

By

TAHA FARAG TAHA SAAD

SUPERVISION COMMITTEE

Dr. Hassan Mohammed Salem
Professor of Biochemistry, Fac. Agric., Cairo University

Dr. Mohamed Saad Abdel-Lattif
Associate Professor of Biochemistry, Fac. Agric., Cairo University

Dr. Abdel-Hamid Ali Hamdy
Researcher Professor of Chemistry of Natural and Microbial Products, NRC.
Name of Candidate: Taha Farag Taha Saad
Degree: M.Sc.
Title of Thesis: Phytochemical and Biological Studies of *Terminalia laxiflora* Leaves Growing in Egypt
Supervisors:
- Dr. Hassan Mohamed Salem
- Dr. Mohamed Saad Abdel-lattif
- Dr. Abdelhamid Ali Hamdy
Department: Biochemistry
Approval: 31/10 /2018

ABSTRACT

In this study, *Terminalia laxiflora* leaves were used to identify the active substances in it and to determine antimicrobial and antioxidant effects. *T. laxiflora* tree belonging to the family Combretaceae is cultivated in Egypt. Extract of *T. laxiflora* leaves as aqueous methanolic, methylene chloride, ethyl acetate and butanol were tested for their antioxidant activity using DPPH free radical scavenging assay. Moreover, the phytochemical screening for qualitative analysis of phenolic constituent were evaluated using KIO₃ test for gallotannins, NaNO₂ test for ellagitannins, Shinoda test for flavonoids and FeCl₃ test for phenolics. In general, *Terminalia laxiflora* methanolic extract and ethyl acetate extract showed the most highest antioxidant activity of IC₅₀ =9.86 and IC₅₀ =10.13; respectively with highest phenolic constituents. Therefore, *Terminalia laxiflora* methanolic extract and ethyl acetate extract should be used as a better radical scavenging agents. The HPLC analysis for phenolic compounds of methanolic extract of *Terminalia laxiflora* showed gallic acid with the highest level followed by p-hydroxybenzoic acid, then sinapic acid and rosmarinic acid, but the lowest amounts were observed for cinnamic acid and caffeic acid. In connection HPLC analysis for flavonoids of *Terminalia laxiflora* methanolic extract showed few compounds such as catechin, rutin, apigenin-7-glucoside and chrysin. The effectiveness of these extracts on the growth of some types of Gram positive of bacteria and the Gram negative of bacteria showed that extracts of methylene chloride and ethyl acetate have high efficiency on the growth some bacteria and therefore the extract of methylene chloride was fractionated using chromatographic columns of silica gel sephadex by vertical chromatography such as HP²⁰ and give more than one part and then purified some of them on a column of sephadex and used the chromatography of the thin layer in it. Three compounds were separated and chemically defined by using some spectral analysis methods such as the magnetic resonance spectrum as rutin and corilagin and vitexen.

Keywords: *Terminalia laxiflora*, phytochemical screening, antimicrobial, antioxidant, nanoparticles.
DEDICATION

I dedicate this work to whom my heartfelt thanks; to my mother and father, as well as to my brothers and sisters for all the support their lovely offered along the period of my post-graduation.
ACKNOWLEDGEMENT

In the name of ALLAH most merciful, all praise is to ALLAH, the lord of the universe, without whose bounty I would not have complete this work.

I would like to thank Dr. Hassan Mohamed Salem; Professor of Biochemistry, Faculty of Agriculture, Cairo University, for his supervision and help during this work.

I would like to thank Dr. Mohamed Saad; Professor of Biochemistry, Faculty of Agriculture, Cairo University, for his supervision and help during this work.

I would like to thank Dr. Abdel-Hamid Ali Hamdy; Researcher Professor of Chemistry of Natural & Microbial Products, National Research Centre, for his close supervision continuous guidance and help during this work.

I would like to thank Dr. Mohamed Abdel-Aziz Elsairi; Researcher Assoc Professor of Phytochemistry and Plant Systematics, NRC, Dokki, Cairo, Egypt for his supervision and help during this work.

I would like to thank Dr. Emam Abdel Mobdy Abdel Rahim; Professor of Biochemistry, Faculty of Agriculture, Cairo University, for his help during this work.

I would like to thank Dr. Ahmed El-Diway; Researcher Professor of Chemistry of Natural and Microbial Products, NRC, Dokki, Cairo, Egypt for his help during this work.

I would like to thank Dr. Selayed A. Omer; Professor of medicinal and aromatic plants, NRC, Dokki, Cairo, Egypt for his help during this work.

I would like to thank Dr. Abdel-Mohsen Ismail; Researcher Professor of Chemistry of Natural and Microbial Products, NRC, Dokki, Cairo, Egypt for his help during this work.

I would like to thank Dr. Samy Mostafa; Researcher Professor of medicinal and aromatic plants, NRC, Dokki, Cairo, Egypt for his help during this work.

I would like to thank Dr. Abdel Nasser Gaber El-gendi; Researcher Assoc Professors medicinal and aromatic plants, NRC, Dokki, Cairo, Egypt for his help during this work.

I would like to thank Dr. Diaa A. Marrez; Researcher in food toxicology and contaminants Dept., NRC, for his help in antimicrobial activity and MIC determination.

I would like to thank Central Lab Team of Food Technology and Nutrition Division, NRC, Dokki, Cairo, Egypt for their help during this work.

I would like to thank Dr. Mahmoud Emam; Researcher at NRC, Phytochemistry and Plant Systematics Dept. for his help during this work.

I would like to thank Dr. Eman Moustafa; Lecturer in Phytochemistry and pharmacology Dept., Faculty of pharmacy, MSA University, for her help in anticancer activity determination.

Grateful appreciation is also extended to all staff members National Research Centre, Dokki, Cairo, Egypt, for their valuable help during executing this work.
CONTENTS

INTRODUCTION .. 7

REVIEW OF LITERATURE .. 7

1. Medicinal plants .. 7

2. Plants polyphenols structural classification ... 7

3. Phenolic acids .. 10

4. Flavonoids ... 11

5. Combretaceae polyphenols ... 15

6. Combretaceae secondary metabolites and their biological significance...... 16

7. Terminalia polyphenols ... 16

8. Antimicrobial metabolites of Combretaceae .. 23

9. Taxonomy of the genus Terminalia laxiflora .. 25

10. Antioxidants of the plant .. 35

MATERIAL AND METHODS ... 38

1. Plant material ... 38

2. Chemicals ... 38

3. Extraction .. 39

4. Phytochemical screening .. 40

 a. Tests for flavonoids (Shinoda’s test) ... 40

 b. Test for phenolics .. 40

 c. Test for ellagitanins ... 40

 d. Test for gallotannins ... 40

5. Determination of antioxidant activity by DPPH free radical scavenging assay .. 41

6. Determination of total phenolics and flavonoids of methanolic extract .. 42

 a. Reagents .. 42

 b. Preparation of samples ... 42

 c. Estimation of total phenolics .. 42

 d. Estimation of total flavonoids .. 43

7. Analysis of phenolic and flavonoid compounds by HPLC 44

8. HPLC-PDA-MS/MS analysis .. 45

9. Synthesis of sliver nanoparticles(AgNPs) ... 45
CONTENTS (continued)

10. Characterization of AgNPs UV-Visible spectral analysis 46
11. Transmission electron microscopy (TEM) .. 46
12. Chromatographic material .. 46
 a. paper chromatography .. 46
 b. Solvent systems for paper chromatography ... 46
 c. Column chromatography ... 47
 d. Solvent system for column chromatography .. 47
13. ¹HNMR analysis .. 47
14. Antimicrobial activity ... 48
 a. Microorganisms tested ... 48
 b. Media used for antimicrobial assay .. 48
 c. Disc diffusion technique (assay) ... 49
 d. Determination of minimum inhibitory concentration (MIC) 51
15. Cytotoxic activity .. 52
16. Statistical analysis ... 53

RESULTS AND DISCUSSION .. 54
1. Phytochemicals analysis ... 54
2. Antioxidant activity ... 55
3. Total phenolics (TPC) and total flavonoids ... 57
4. Phenolic profile of T. laxiflora leaves methanolic extract 60
5. Formation of nanoparticle .. 93
6. UV-visible and TEM studies ... 94
7. Structure elucidation of the isolated compounds of Terminalia laxiflora 95
8. Antimicrobial activity of Terminalia laxiflora ... 99
 a. Antibacterial activity of T. laxiflora leaves total extract and pure compounds .. 99
 b. Antifungal activity of T. laxiflora leaves total extract and pure compounds .. 103
9. Cytotoxic activity .. 107

SUMMARY ... 110
REFERENCES ... 116

ARABIC SUMMARY ..