Elevated Th17 & IL 23 in Hypertensive Patients with Acutely Increased Blood Pressure

Thesis

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

Presented By

Ahmed ElNagar Ahmed Basry M.B.B.Ch

Under Supervision of

Prof.Dr/ Fawzia Hassan Ahmed Abo-Ali

Professor of Internal Medicine, Allergy and Clinical Immunology Faculty of Medicine-Ain Shams University

Dr./ Eman Ahmed El-Sayed Khalil

Assistant Professor of Internal Medicine, Allergy and Clinical Immunology Faculty of Medicine - Ain Shams University

Dr/ Mai Ahmed Yousef El-Deeb

Lecturer of Internal Medicine, Allergy and Clinical Immunology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2018

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I would like to express my deep thanks and sincere gratitude to **Professor Dr/ Fawzia Abo-Ali**, Professor of Internal Medicine, Allergy and Clinical Immunology Faculty of medicine-Ain Shams University, for suggesting the point, sincere encouragement and valuable criticism. It is a great honor for me to work under her supervision throughout my postgraduate career.

I am deeply indebted to **Dr./ Eman El-sayed Ahmed**, Assistant Professor of Internal Medicine, Allergy and Clinical Immunology, for her active supervision, valuable advice, precious comments and kind help throughout this study.

Thanks are due to **Dr/Mai Ahmed El-deeb**, Lecturer of Internal Medicine, Allergy and Clinical immunology, for her constant guidance, keen supervision and valuable help.

I also would like to record my greatest thanks and gratitude to my parents, my precious son "Yahya", my dear wife "Nour", Dr.Farouk, Dr Hossnia and my friends for their actual help and support.

I also place on record, my sense of gratitude to one and all who, directly or indirectly, have lent their helping hand in this venture.

Ahmed ElNagar Ahmed Basry

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	9
Introduction	1 -
Aim of the Work	3
Review of Literature	
Hypertension	4
■ Innate Immune System Cells and Hypertension.	19
• Adaptive Immune Response and Hypertension	44
Subjects and Methods	56
Results	63
Discussion	89
Summary and Conclusion	97
References	100
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Tables of R	eview	
Table (1):	Categories of BP in Adults	4
Table (2):	Causes of secondary hypertension	9
Table (3):	Checklist for Accurate Measurement	
Table (4):	Best Proven Nonpharmac Interventions for Prevention and Tre of Hypertension	eatment
Table (5):	Non-pharmacological recommendate reduction of blood pressure	ions for
Table (6):	Recommended two-drug combinate anti hypertensive drugs	
Table (7):	Hypertension diagnosed according to	JNC 857
Tables of R	esults	
Table (1):	Demographic characteristics of th study groups:	
Table (2):	Systolic and diastolic blood pres studied populations	
Table (3):	Lab investigation of studied populati	ons68
Table (4):	Immunological finding of populations	
Table (5):	Correlation between IL17/CD4 IL23/CD4%	
Table (6):	Correlation between IL17/CD4% & data	
Table (7):	Correlation between IL23/CD4% & v	0.5

List of Figures

Fig. No.	Title	Page No.
Figures of Re	eview	
Figure (1):	Innate and adaptive immune cel have been shown to play a critical hypertension	role in
Figure (2):	Inflammation in the kidney, brain, and heart promote hyperand end-organ damage	tension
Figures of Re	esults	
Figure (1):	Comparison between the three according age	_
Figure (2):	Comparison between the three according gender	· -
Figure (3):	Comparison between the three according SBP	
Figure (4):	Comparison between the three according DBP	
Figure (5):	Comparison between the three according Urea.	
Figure (6):	Comparison between the three according Creatinine	
Figure (7):	Comparison between the three according S.GPT.	-
Figure (8):	Comparison between the three according S.GOT	-
Figure (9):	Comparison between the three according HBG.	
Figure (10):	Comparison between the three	groups

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure (11):	Comparison between the three according IL17/CD4%	
Figure (12):	Comparison between the three according IL23/CD4%	
Figure (13):	Comparison between the three according IL17-23/CD4%	_
Figure (14):	Comparison between the three according IL23-E	
Figure (15):	The scatter graph between IL17/& IL23/CD4% of group (A)	
Figure (16):	The scatter graph between IL17/& IL23/CD4% of group (B)	
Figure (17):	The scatter graph between IL17/ & IL23/CD4% of group (C)	
Figure (18):	The scatter graph between IL17/& IL23/CD4% all subject	
Figure (19):	The scatter graph between IL17/ & SBP	
Figure (20):	The scatter graph between IL17/ & DBP	
Figure (21):	The scatter graph between IL17/& TG	
Figure (22):	The scatter graph between IL17/ & SGPT	
Figure (23):	The scatter graph between IL17/& LDL.	

Figure (24):	The scatter graph between & HDL	
	List of Figures	cont
Fig. No.	Title	Page No.
Figure (25):	The scatter graph between & SGPT	
Figure (26):	The scatter graph between & SGOT	
Figure (27):	The scatter graph between & TG	
Figure (28):	The scatter graph between & HDL	
Figure (29):	The scatter graph between & SBP	
Figure (30):	The scatter graph between & DBP	

Tist of Abbreviations

Abb.	Full term
ACE	Angiotensin-converting enzyme
	Angiotensinii
_	Activating protein-1
	Antigen-presenting cells
	Antigen presenting cells
	Adenosine tri phosphate
	B cell-activating factor receptor
	Beta blocker
	British Hypertension Society
	Blood pressure
	Calcium channel blocker
	Activation marker
CIAS1	
	Cyclooxygenase 2
Cpa ban	stranded synthetic DNA
CTL	Cytotoxic T cell
D	
	Damage-associated molecular pattern
D11111 0	molecules
DASH	Dietary Approaches to Stop Hypertension
	Diastolic Blood pressure
	Dendritic cells
	Deoxyribonucleic acid
	Deoxy-corticosterone acetate-salt
	Endothelial cells
	Enzyme-linked immunosorbent assay
	European Society of Cardiology
_~~	

Tist of Abbreviations cont...

Abb.	Full term
T077	
	European Society of Hypertension
	Highly active antiretroviral therapy
	High-density lipoprotein
<i>HGM</i>	_
	Human immunodeficiency virus
HMGB1	High mobility group box 1 protein
<i>IFN</i>	Interferon gamma
	$Immunoglobulin\ G$
<i>IL-17</i>	Interleukin 17
IL23	Interleukin 23
iNOS	Inducible nitric oxide synthase
<i>IRF</i>	Interferon regulatory factor
<i>ISH</i>	International Society of Hypertension
JNC8	Eighth Joint National Committee
<i>LDL</i>	Low-density lipoprotein
<i>L-NAME</i>	Nitro-L-arginine-methyl-ester
<i>MAPKs</i>	Mitogen-activated protein kinases
MCP-1	Monocyte chemo attractant protein-1
<i>MMF</i>	Mycophenolate mofetil
<i>MR</i>	Mineralo-corticoid receptors
MyD88	Myeloid differentiation
<i>NAD(P)H</i>	Nicotinamide adenine dinucleotide
	phosphate
NF-κB	Nuclear factor kappa-light-chain-enhancer
	$of\ activated\ B\ cells$
<i>NICE</i>	National Institute for Health and Care
	Excellence.
NK-Tcell	Natural Killer T
<i>NLR</i>	Leucine-rich repeat
NLRP3	Multiprotein oligomer
<i>PAMPs</i>	Pathogen-associated molecular patterns

Tist of Abbreviations cont...

Abb.	Full term
PB	Perinheral blood
	Phosphatidyl ethanolamine-binding protein
	Peridinin chlorophyll
	Pattern recognition receptors
	Para ventricular nucleus
	Renin-angiotensin-aldosterone system
	Recombination-activating gene 1
	Retinoic acid-inducible gene I
	Systolic Blood pressure
	Serum glutamic-oxaloacetic transaminase
SGPT	Serum glutamic pyruvic transaminase
	Spontaneously hypertensive rats
	Superoxide dismutase
STATA	Software program
T cell receptor	
TC	
<i>TG</i>	Triglycerides
Th 17	T helper cell 17
<i>TLR</i>	Toll-like receptors
TNF	Tumor necrosis factor-alpha
TRIF	TIR-domain-containing adapter-inducing
	interferon- eta
<i>UK</i>	United Kingdom
<i>VSMC</i>	Vascular smooth muscle cells and
<i>WBC</i>	White blood cells
<i>WHO</i>	World Health Organization

Introduction

s a chronic medical condition characterized by elevated blood pressure, hypertension is recognized as a major risk factor for a variety of life threatening diseases including stroke, myocardial infarction, heart failure and aortic aneurysm. And most of these severe complications occur in the hypertensive patients with a sudden increase of blood pressure (*Guzik et al.*, 2007).

In Egypt hypertension is with prevalence rate of 26.3% among the adult population. Its incidence increases with aging, around 50% of Egyptians over the age of 60 years have hypertension (*Hasan et al.*, 2014).

The pathophysiology of the sudden/acute increase of blood pressure in hypertensive patients is not clearly characterized. Despite enormous progress in hypertension research, the precise etiology of blood pressure elevation remains unknown in the vast majority of hypertensive patients.

While dysfunction in cardiovascular control centers including the kidney, vasculature, and brain the can coordinately contribute sustained hypertension. The to involvement of immune activation in hypertension has been well demonstrated by many research groups (Jiandong et al., *2015*).

Consistently, the activation of inflammatory cells is found in the peripheral blood of hypertensive patients (*Dorffel et al.*, 1999). Inflammation and immune response, mediated by T lymphocyte can directly lead to vascular remodeling and increase of blood pressure. Macrophages and T cells infiltrate in the heart, the vasculature, and the kidney during hypertension (*Wenzel et al.*, 2011).

Enhanced expression of adhesion molecules on the blood vessels in these organs contributes to inflammatory cell accumulation by permitting increased leukocyte extravasation. In turn, these infiltrating mononuclear cells secrete or induce several pro-hypertensive cytokines including IL-6, IL-17, and TNF-α (*Ates et al.*, 2014). Al adoptive transfer studies (*Guzik et al.*, 2007)

Th17 is a recently discovered subgroup of helper T cell characterized by the secretion of IL-17. It is believed that Th17 may play a role in the pathogenesis of hypertension. However, its underlying mechanism is still unknown (*Schiffrin*, 2010).

In the recent study, demonstrated an increased level of Th17 in hypertensive patients with acute increases of blood pressure, which is probably caused by the increased plasma IL-23. The characterization of its pathophysiology might be beneficial for the prevention and therapy of the sudden/acute increase of blood pressure in hypertensive patients (*Jiandong and Steven*, 2015).

AIM OF THE WORK

he aim of this study is To evaluate the role of Th17 and IL23 in the immune pathogenesis of hypertension.

Hypertension

pragmatic definition of hypertension, is the level of blood pressure for which investigation and management do more good than harm (*Neil*, 2015).

In 2010, high BP was the leading cause of death and disability-adjusted life years worldwide (*Forouzanfar et al.*, 2017).

In most national and international guidelines the threshold for the diagnosis of hypertension is a systolic blood pressure measured in a clinic or office of at least 140 mm Hg, a diastolic blood pressure of at least 90 mm Hg, or both (*James et al.*, 2014).

Blood Pressure is categorized into 4 levels on the basis of average BP measured in a healthcare setting: normal, elevated, and stage 1 or 2 hypertension (Table 1).

Table (1): Categories of BP in Adults

BP Category		SBP	DBP
Normal	and	<120 mm Hg	<80 mm Hg
Elevated	and	120–129 mm Hg	<80 mm Hg
Hypertension			
Stage 1	or	130–139 mm Hg	80–89 mm Hg
Stage 2	or	≥140 mm Hg	≥90 mm Hg

(Whelton et al., 2017)