

Statistical Modelling and Analysis of Gene Expression Data

Muhamed Wael Farouq Teaching Assistant Statistics, Mathematics & Insurance Department Faculty of Commerce Ain Shams University

A dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy (Applied Statistics)

Under Supervision of:

Professor Mostafa Galal Mostafa

Statistics, Mathematics & Insurance Department Faculty of Commerce Ain Shams University Professor Medhat Abdel-Aal

Statistics, Mathematics & Insurance Department Faculty of Commerce Ain Shams University

Professor Abdel-Badeeh Salem

Faculty of Computer & Information Sciences Ain Shams University

2018

Approval Sheet

Title of Thesis : Statistical Modeling and Analysis of Gene Expression Data

Academic Degree : Ph.D. in Applied Statistics Name of Student : Muhamed Wael Farouq Abdel-Azeim

This thesis submitted in partial fulfillment of the requirements for the Degree of Philosophy in Applied Statistics has been approved by:

Examination committee

1- Professor Dr. Mustafa Galal Mustafa

Professor – Mathematics & Statistics Department Faculty of Commerce Ain Shams university

2- Professor Dr. Medhat Mohamed Abdel-Aal

Professor – Mathematics & Statistics Department Faculty of Commerce Ain Shams University

3- Professor Dr. Abdel-Badeeh Mohamed Salem

Professor - Faculty of Computer and Information Sciences Ain Shams University

4- Professor Dr. Abdulla Ahmed Abd El-Ghaly

Professor - Faculty of Economics and Political Sciences Cairo University

5- Dr. Mamdouh Abdel-Aleem

Associate Professor – Mathematics & Stati	stics Department
Faculty of Commerce	
Ain Shams University	

Date of Dissertation Defense: 29/12/2018 Approval date / /

Acknowledgements

I would like to express my deep appreciation to Prof. Mustafa Galal Mustafa for his support, encouragement, and patience during my years of study.

I would also like to express my gratitude to my supervisor Prof. Medhat Mohamed Abdelaal for allowing me to work on this project. I have learned a lot from him, his constructive appraisal has kept me motivated and interested in this work the whole time.

My deepest appreciation goes to my supervisor, Prof. Amir Hussain at University of Stirling, UK for his supervision, generous support and advice in all the aspects of this work. I sincerely thank him for providing me the opportunity for the joint supervision of my PhD at University of Stirling, UK. It would have never been achievable for me to take this work to completion without his constant feedback and answering my quires promptly.

I sincerely acknowledge and express my gratitude to Dr. Jozsef Farakas at University of Stirling, UK for his cosupervision. For him goes the credit for enlightening me the first glance of research in the mathematical aspects of this work. As well as for his insightful discussions and weekly follow-up meetings.

I will forever be thankful to Dr. Wadii Boulila. Wadii had confidence in my research and has been a fount of confidence and inspiration to me. His help was invaluable at many stages in the course of this research project beside his careful editing contributed enormously to the production of this thesis.

My gratitude also goes to Prof. Abdel-Badeeh Mohamed Salem for the guidance in all aspects of the research, patience and ongoing support through the time of the PhD. I also have to thank the members of my PhD committee, Prof. Abdulla Ahmed Abd El-Ghaly and Dr. Mamdouh Abdel-aleem for their helpful career advice, valuable time and patience.

I gratefully acknowledge the funding received towards my PhD from the Egyptian Cultural Affairs and Mission Sector to pursue my joint supervision PhD at University of Stirling, UK.

I would like also to thank all my colleagues and members of staff at Department of Computing Science and Mathematics at University of Stirling, UK. They willingly lent me their time, resources and expertise. They expressed interest in the project and provided formal and informal constructive feedback on the research. Besides, their friendly environment and hospitality has made the beautiful city of Stirling more charming.

I also wish to take this opportunity to thank my wife, Nagwan and Maya for their love, support and entertainment. Last but not least, I am indebted to my parents, brothers and sisters for all their support and comfort. My parents have sacrificed their lives for my sisters, brothers and myself and provided unconditional love and care. I love them so much. I surely wouldn't have come this far without them. To the soul of my father.... I love you.

Muhamed Wael Farouq

Table of Contents

Chapter One: Introduction

1.1	Purpose of the Research	•••••	2
1.2	Significance of the Research	•••••	3
1.3	Research Hypotheses	• • • • • • • • • • • • • • • • • • • •	4
1.4	Limitation of the Research	•••••	5
1.5	Dataset	•••••	5
1.6	Plan of the Research	• • • • • • • • • • • • • • • • • • • •	6

Chapter Two: Biological Background

2.1	Introduction	• • • • • • • • • • • • • • • • • • • •	7
2.2	Gene expression via RNA	•••••	9
2.3	Epigenetics	•••••	10
2.4	Small Non-coding RNA (ncRNA)	•••••	15
2.5	Cancer Genomics	•••••	19
2.6	Representation of Gene Expression Data	•••••	21

Chapter Three: Clustering and Dempster-Shafer Theory

3.1	Introduction	•••••	23
3.2	Clustering	•••••	23
3.3	Clustering Tendency	•••••	26
3.4	Criteria of Clustering	•••••	29
3.5	Optimisation Algorithms	•••••	30
3.6	Proximity Measures	•••••	33
3.7	Clustering Objective Function	•••••	40
3.8	Validation and Cardinality of Clustering	•••••	43
3.9	Ensemble of Clustering Validity Indices	•••••	61
3.10	Post processing Analysis of Clustering	•••••	62
3.11	Literature Review of Clustering Algorithms for Gene Expression	•••••	63
3.12	Evidence Theory and Dempster-Shafer	••••	66
3.13	Literature Review of Evidence Theory and Gene Expression	•••••	68
3.14	Proposed Framework	•••••	70

Table of Contents - Continued

	Chapter Four: Mathematical Modelling of Population Dynamics		
4.1	Introduction	••••	75
4.2	First Order Ordinary Differential Equation The Euler Method	•••••	81
4.3	First Order Ordinary Differential Equation Separable Equations	•••••	82
4.4	Second Order Ordinary Differential Equation The Euler Method	•••••	83
4.5	Analytical Solution for the Second Order Linear Homogenous ODE with Constant Coefficients	•••••	85
4.6	From Ordinary Differential Equations to Partial Differential Equations	•••••	89
4.7	Analytical Solution of the First Order Linear PDE with Constant Coefficients	•••••	94
4.8	Second Order Linear Homogenous PDE with Constant Coefficient	•••••	96
4.9	Diffusion Equation	•••••	104
	Chapter Five: Computational Results and Qualitative Analysis		
5.1	Two Species Diffusion Equation	•••••	119
5.2	Two species Model in Dirichlet Initial Boundary Value Problem		125
5.3	Two species Model in Neumann Initial Boundary Value Problem	•••••	128
5.4	Interpretation	••••	128
5.5	Experimental Results	•••••	175
	Chapter Six: Conclusion and Future Work		
6.1	Conclusion	•••••	185
6.2	Future Work	•••••	186

List of Figures

Figure 2.1: DNA Molecule		8
Figure 2.2: mRNA Transcription		10
Figure 2.3: Gene Dynamic Scheme		13
Figure 2.4: DNA Methylation		15
Figure 2.5: Pre-transcription, Transcription and Post-Transcription Scheme		18
Figure 3.1: Evidence Structure		68
Figure 3.2: Proposed Framework		72
Figure 3.3: Fusion Clustering Scheme		74
Figure 5.1: 2D Initial Condition Consistency Correction		127
Figure 5.2: 3D Initial Condition Consistency		127
Figure 5.3a: Two Species Model 1.1 mRNA Population at Transition States		132
Figure 5.3b: Two Species Model 1.1 Total mRNA Population at Transition States		132
Figure 5.4a: Two Species Model 1.2 mRNA Population at Transition States		132
Figure 5.4b: Two Species Model 1.2 Total mRNA Population at Transition States		132
Figure 5.5a: Two Species Model 1.3 mRNA Population at Transition States		133
Figure 5.5b: Two Species Model 1.3 Total mRNA Population at Transition States		133
Figure 5.6a: Two Species Model 1.4 mRNA Population at Transition States		133
Figure 5.6b: Two Species Model 1.4 Total mRNA Population at Transition States	•••••	133
Figure 5.7a: Two Species Model 1.5 mRNA Population at Transition States	•••••	134
Figure 5.7b: Two Species Model 1.5 Total mRNA Population at Transition States		134
ropulation at Transition States		134

Figure 5.8a: Two Species Model 1.6 mRNA		
Population at Transition States		
Figure 5.8b: Two Species Model 1.6 Total mRNA		134
Population at Transition States		
Figure 5.9a: Two Species Model 1.7 mRNA		135
Population at Transition States		
Figure 5.9b: Two Species Model 1.7 Total mRNA		135
Population at Transition States		
Figure 5.10a: Two Species Model 1.8 mRNA		135
Population at Transition States		
Figure 5.10b: Two Species Model 1.8 Total		135
mRNA Population at Transition States		
Figure 5.11a: Two Species Model 1.9 mRNA		136
Population at Transition States		
Figure 5.11b: Two Species Model 1.9 Total		136
mRNA Population at Transition States		
Figure 5.12a: Two Species Model 1.10 mRNA		136
Population at Transition States		
Figure 5.12b: Two Species Model 1.10 Total		136
mRNA Population at Transition States		
Figure 5.13a: Two Species Model 1.11 mRNA		137
Population at Transition States		
Figure 5.13b: Two Species Model 1.11 Total		137
mRNA Population at Transition States		
Figure 5.14a: Two Species Model 1.12 mRNA	•••••	137
Population at Transition States		
Figure 5.14b: Two Species Model 1.12 Total	•••••	137
mRNA Population at Transition States		1.00
Figure 5.15a: Two Species Model 1.13 mRNA	•••••	138
Population at Transition States		100
Figure 5.15b: Two Species Model 1.13 Total	•••••	138
mRNA Population at Transition States		100
Figure 5.16a: Two Species Model 1.14 mRNA	•••••	138
Formation at Transition States		120
Figure 5.100: Two Species Model 1.14 Total	•••••	138
Eigure 5, 179, Two Species Model 1, 15 mDNA		120
Figure 5.17a: Two Species Model 1.15 IIIRNA	•••••	139
Formation at Transition States		120
rigure 3.1/0: 1 wo species Model 1.15 10tal mDNA Dopulation at Transition States	•••••	139
mented ropulation at Transition States		

Figure 5.18a: Two Species Model 1.16 mRNA		139
Population at Transition States		
Figure 5.18b: Two Species Model 1.16 Total		139
mRNA Population at Transition States		
Figure 5.19a: Two Species Model 1.17 mRNA		140
Population at Transition States		
Figure 5.19b: Two Species Model 1.17 Total		140
mRNA Population at Transition States		
Figure 5.20a: Two Species Model 1.18 mRNA		140
Population at Transition States		
Figure 5.20b: Two Species Model 1.18 Total		140
mRNA Population at Transition States		
Figure 5.21a: Two Species Model 1.19 mRNA		141
Population at Transition States		
Figure 5.21b: Two Species Model 1.19 Total		141
mRNA Population at Transition States		
Figure 5.22a: Two Species Model 2.1 mRNA		143
Population at Transition States		
Figure 5.22b: Two Species Model 2.1 Total		143
mRNA Population at Transition States		
Figure 5.23a: Two Species Model 2.2 mRNA		143
Population at Transition States		1.0
Figure 5.23b: Two Species Model 2.2 Total		143
mRNA Population at Transition States		1 10
Figure 5.24a: Two Species Model 2.3 mRNA		144
Population at Transition States	•••••	
Figure 5.24b: Two Species Model 2.3 Total		144
mRNA Population at Transition States	•••••	1 1 1
Figure 5.25a: Two Species Model 2.4 mRNA		144
Population at Transition States		1 1 1
Figure 5.25b: Two Species Model 2.4 Total		144
mRNA Population at Transition States		1 1 1
Figure 5 26a: Two Species Model 2.5 mRNA		145
Population at Transition States	• • • • • • • • • • • • • • • • •	175
Figure 5 26b: Two Species Model 2.5 Total		1/15
mRNA Population at Transition States	• • • • • • • • • • • • • • • • •	145
Figure 5 27a: Two Species Model 2.6 mRNA		1/15
Population at Transition States	•••••	143
Figure 5 27h: Two Species Model 2.6 Total		115
mRNA Population at Transition States	• • • • • • • • • • • • • • • • •	143
intra i opulation at fransition states		

Figure 5.28a: Two Species Model 2.7 mRNA	 146
Population at Transition States	
Figure 5.28b: Two Species Model 2.7 Total	 146
mRNA Population at Transition States	
Figure 5.29a: Two Species Model 2.8 mRNA	 146
Population at Transition States	
Figure 5.29b: Two Species Model 2.8 Total	 146
mRNA Population at Transition States	
Figure 5.30a: Two Species Model 2.9 mRNA	 147
Population at Transition States	
Figure 5.30b: Two Species Model 2.9 Total	 147
mRNA Population at Transition States	
Figure 5.31a: Two Species Model 2.10 mRNA	 147
Population at Transition States	
Figure 5.31b: Two Species Model 2.10 Total	 147
mRNA Population at Transition States	
Figure 5.32a: Two Species Model 2.11 mRNA	 148
Population at Transition States	
Figure 5.32b: Two Species Model 2.11 Total	 148
mRNA Population at Transition States	
Figure 5.33a: Two Species Model 2.12 mRNA	 148
Population at Transition States	
Figure 5.33b: Two Species Model 2.12 Total	 148
mRNA Population at Transition States	
Figure 5.34a: Two Species Model 2.13 mRNA	 149
Population at Transition States	
Figure 5.34b: Two Species Model 2.13 Total	 149
mRNA Population at Transition States	
Figure 5.35a: Two Species Model 2.14 mRNA	 149
Population at Transition States	
Figure 5.35b: Two Species Model 2.14 Total	 149
mRNA Population at Transition States	
Figure 5.36a: Two Species Model 2.15 mRNA	 150
Population at Transition States	
Figure 5.36b: Two Species Model 2.15 Total	 150
mRNA Population at Transition States	
Figure 5.37a: Two Species Model 2.16 mRNA	 150
Population at Transition States	
Figure 5.37b: Two Species Model 2.16 Total	 150
mRNA Population at Transition States	

Figure 5.38a: Two Species Model 2.17 mRNA	 151
Population at Transition States	
Figure 5.38b: Two Species Model 2.17 Total	 151
mRNA Population at Transition States	
Figure 5.39a: Two Species Model 2.18 mRNA	 151
Population at Transition States	
Figure 5.39b: Two Species Model 2.18 Total	 151
mRNA Population at Transition States	
Figure 5.40a: Two Species Model 2.19 mRNA	 152
Population at Transition States	
Figure 5.40b: Two Species Model 2.19 Total	 152
mRNA Population at Transition States	
Figure 5.41a: Two Species Model 3.1 mRNA	 154
Population at Transition States	
Figure 5.41b: Two Species Model 3.1 Total	 154
mRNA Population at Transition States	
Figure 5.42a: Two Species Model 3.2 mRNA	 154
Population at Transition States	
Figure 5.42b: Two Species Model 3.2 Total	 154
mRNA Population at Transition States	
Figure 5.43a: Two Species Model 3.3 mRNA	 155
Population at Transition States	
Figure 5.43b: Two Species Model 3.3 Total	 155
mRNA Population at Transition States	
Figure 5.44a: Two Species Model 3.4 mRNA	 155
Population at Transition States	
Figure 5.44b: Two Species Model 3.4 Total	 155
mRNA Population at Transition States	
Figure 5.45a: Two Species Model 3.5 mRNA	 156
Population at Transition States	
Figure 5.45b: Two Species Model 3.5 Total	 156
mRNA Population at Transition States	
Figure 5.46a: Two Species Model 3.6 mRNA	 156
Population at Transition States	
Figure 5.46b: Two Species Model 3.6 Total	 156
mRNA Population at Transition States	
Figure 5.47a: Two Species Model 3.7 mRNA	 157
Population at Transition States	
Figure 5.47b: Two Species Model 3.7 Total	 157
mRNA Population at Transition States	

Figure 5.48a: Two Species Model 3.8 mRNA	 157
Population at Transition States	
Figure 5.48b: Two Species Model 3.8 Total	 157
mRNA Population at Transition States	
Figure 5.49a: Two Species Model 3.9 mRNA	 158
Population at Transition States	
Figure 5.49b: Two Species Model 3.9 Total	 158
mRNA Population at Transition States	
Figure 5.50a: Two Species Model 3.10 mRNA	 158
Population at Transition States	
Figure 5.50b: Two Species Model 3.10 Total	 158
mRNA Population at Transition States	
Figure 5.51a: Two Species Model 3.11 mRNA	 159
Population at Transition States	
Figure 5.51b: Two Species Model 3.11 Total	 159
mRNA Population at Transition States	
Figure 5.52a: Two Species Model 3.12 mRNA	 159
Population at Transition States	
Figure 5.52b: Two Species Model 3.12 Total	 159
mRNA Population at Transition States	
Figure 5.53a: Two Species Model 3.13 mRNA	 160
Population at Transition States	
Figure 5.53b: Two Species Model 3.13 Total	 160
mRNA Population at Transition States	
Figure 5.54a: Two Species Model 3.14 mRNA	 160
Population at Transition States	
Figure 5.54b: Two Species Model 3.14 Total	 160
mRNA Population at Transition States	
Figure 5.55a: Two Species Model 3.15 mRNA	 161
Population at Transition States	
Figure 5.55b: Two Species Model 3.15 Total	 161
mRNA Population at Transition States	
Figure 5.56a: Two Species Model 3.16 mRNA	 161
Population at Transition States	
Figure 5.56b: Two Species Model 3.16 Total	 161
mRNA Population at Transition States	
Figure 5.57a: Two Species Model 3.17 mRNA	 162
Population at Transition States	
Figure 5.57b: Two Species Model 3.17 Total	 162
mRNA Population at Transition States	

Figure 5.58a: Two Species Model 3.18 mRNA	 162
Population at Transition States	
Figure 5.58b: Two Species Model 3.18 Total	 162
mRNA Population at Transition States	
Figure 5.59a: Two Species Model 3.19 mRNA	 163
Population at Transition States	
Figure 5.59b: Two Species Model 3.19 Total	 163
mRNA Population at Transition States	
Figure 5.60a: Two Species Model 3.20 mRNA	 163
Population at Transition States	
Figure 5.60b: Two Species Model 3.20 Total	 163
mRNA Population at Transition States	
Figure 5.61a: Two Species Model 3.21 mRNA	 164
Population at Transition States	
Figure 5.61b: Two Species Model 3.21 Total	 164
mRNA Population at Transition States	
Figure 5.62a: Two Species Model 3.22 mRNA	 164
Population at Transition States	
Figure 5.62b: Two Species Model 3.22 Total	 164
mRNA Population at Transition States	
Figure 5.63a: Two Species Model 4.1 mRNA	 166
Population at Transition States	
Figure 5.63b: Two Species Model 4.1 Total	 166
mRNA Population at Transition States	
Figure 5.64a: Two Species Model 4.2 mRNA	 166
Population at Transition States	
Figure 5.64b: Two Species Model 4.2 Total	 166
mRNA Population at Transition States	
Figure 5.65a: Two Species Model 4.3 mRNA	 167
Population at Transition States	
Figure 5.65b: Two Species Model 4.3 Total	 167
mRNA Population at Transition States	
Figure 5.66a: Two Species Model 4.4 mRNA	 167
Population at Transition States	
Figure 5.66b: Two Species Model 4.4 Total	 167
mRNA Population at Transition States	
Figure 5.67a: Two Species Model 4.5 mRNA	 168
Population at Transition States	
Figure 5.67b: Two Species Model 4.5 Total	 168
mRNA Population at Transition States	

Figure 5.68a: Two Species Model 4.6 mRNA	 168
Population at Transition States	
Figure 5.68b: Two Species Model 4.6 Total	 168
mRNA Population at Transition States	
Figure 5.69a: Two Species Model 4.7 mRNA	 169
Population at Transition States	
Figure 5.69b: Two Species Model 4.7 Total	 169
mRNA Population at Transition States	
Figure 5.70a: Two Species Model 4.8 mRNA	 169
Population at Transition States	
Figure 5.70b: Two Species Model 4.8 Total	 169
mRNA Population at Transition States	
Figure 5.71a: Two Species Model 4.9 mRNA	 170
Population at Transition States	
Figure 5.71b: Two Species Model 4.9 Total	 170
mRNA Population at Transition States	
Figure 5.72a: Two Species Model 4.10 mRNA	 170
Population at Transition States	
Figure 5.72b: Two Species Model 4.10 Total	 170
mRNA Population at Transition States	
Figure 5.73a: Two Species Model 4.11 mRNA	 171
Population at Transition States	
Figure 5.73b: Two Species Model 4.11 Total	 171
mRNA Population at Transition States	
Figure 5.74a: Two Species Model 4.12 mRNA	 171
Population at Transition States	
Figure 5.74b: Two Species Model 4.12 Total	 171
mRNA Population at Transition States	
Figure 5.75a: Two Species Model 4.13 mRNA	 172
Population at Transition States	
Figure 5.75b: Two Species Model 4.13 Total	 172
mRNA Population at Transition States	
Figure 5.76a: Two Species Model 4.14 mRNA	 172
Population at Transition States	
Figure 5.76b: Two Species Model 4.14 Total	 172
mRNA Population at Transition States	
Figure 5.77a: Two Species Model 4.15 mRNA	 173
Population at Transition States	
Figure 5.77b: Two Species Model 4.15 Total	 173
mRNA Population at Transition States	