Early Cognitive Impairment in Multiple Sclerosis Patients In Relation to Brain Atrophy, Egyptian Sample

Thesis

Submitted for Partial Fulfillment of M.D Degree in Neurology

By

Alaa Mohamed Sayed Abou Steit

M.B., B. Ch., M.Sc. in Neuropsychiatry

Under Supervision of

Prof. Dr. Magd Fouad Zakaria

Professor of Neurology Faculty of Medicine-Ain Shams University

Prof Dr. Tarek Assad Abdo Ahmed

Professor of Psychiatry
Faculty of Medicine-Ain Shams University

Prof. Dr. Azza Abdel Nasser Abdel Aziz

Professor of Neurology Faculty of Medicine-Ain Shams University

Prof Dr. Dina Mohamed Abdel Gawad

Assistant Professor of Neurology Faculty of Medicine-Ain Shams University

Prof Dr. Yosra Abdelzaher Abdullah

Assistant Professor of Radiodiagnosis Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

First and foremost, I feel always indebted to *Allah* the most beneficent and merciful.

I would like to express my deepest thanks, gratitude and appreciation to *Prof. Magd Fouad Zakaria*, Professor of Neurology, Faculty of Medicine, Ain-Shams University.

Special thanks are due to **Prof. Tarek Assad Abdo**, Professor of Psychiatry, Faculty of Medicine, Ain-shams University for his sincere efforts and fruitful encouragements.

I am deeply thankful to **Prof. Azza Abdel-Naser Abdel- Aziz,** Professor of Neurology, Faculty of Medicine, Ain-Shams University for her great help, outstanding support, understanding, active participation and guidance.

I am truly grateful to **Prof. Dina Abdel-Gawad Zamzam**, Assisstant Professor of Neurology, Faculty of Medicine, Ain-Shams University for her heartful guidance and constant supervision.

I am truly thankful to *Prof. Yosra Abdel-Zaher Abdallah*, Assisstant Professor of Radio-diagnosis, Faculty of Medicine, Ain-Shams University for her continuous support and meticulous supervision.

I would like to express my deepest gratitude to the Professors panel who accepted to review and discuss my thesis *Prof. Magd Fouad Zakaria*, *Prof. Tarek Assad Abdo*, *Prof. Hany Aref Amin*, Faculty of Medicine, Ain-Shams University, *Prof. Hussein Mohamed Hussein*, Faculty of Medicine, Al-Azhar University.

I would like to express my greatest gratitude to all those who supported me to complete this work, all the personnel in the *MS Unit*, *Ain-Shams Univeristy* and all the *Patients* who accepted

to participate in this study as well as all my seniors and colleagues in *Neuro-Psychiatry Department, Ain shams University*.

I would like to thanks my tutors in my Master degree thesis who taught me how to conduct research in the first place, *Prof. Samia Ashour Mohamed Helal*, Professor of Neurology, Faculty of Medicine, Ain-Shams Univeristy, *Prof. Azza Abdel-Naser Abdel-Aziz*, Professor of Neurology, Faculty of medicine, Ain-Shams Univeristy, *Prof. Ahmed El-Bassiouny*, Assisstant Professor of Neurology, Faculty of Medicine, Ain-Shams Univeristy.

I would like to express my hearty thanks to all my family members, my husband *Abdallah Hamed*, my kids *Mohamed* and *Mayan*, for bearing me all through and supporting me through all of hard times and good times.

I would like to thank my 2nd mother *Prof. Safeya Mohamed Diab*, professor of clinical pathology, Banha University for backing my back whenever I needed her, lots and lots of emotional support given to me through all the hard times.

and a very special thanks to my father *Prof. Mohamed Sayed Abou-Steit*, Professor of General Surgery and Oncology, Al-Azhar Univeristy and my mother *Prof.Naglaa Abdallah El-Shabrawy*, Professor of Obstetrics and Gynecology, Faculty of Medicine, Al-Azhar University for being the guiding light for me since the day I was born.

Contents

Subjects	Paģe
List of abbreviations	II
List of Figures	VII
List of Tables	IX
• Introduction	1
Aim of the Work	
• Review of Literature	
♦ Definition & Epidemiology of MS	9
♦ Risk Factors of Multiple Sclerosis	19
♦ Pathology of Multiple Sclerosis	35
♦ Clinical Features of Multiple Sclerosis	47
♦ Cognition in Multiple Sclerosis	53
♦ Brain Atrophy in Multiple Sclerosis	78
Patients and Methods	101
• Results	108
• Discussion	140
Summary and Conclusion	155
• Recommendations	160
• References	162
• Appendices	215
Arabic Summary	

Abbrev.	Meaning
5-HT2C	Serotonin receptor
ASIC1	Acid Sensing Ion Channel Subunit1
ATP	Adenosine Tri-Phosphate
B cell	B lymphocyte
BBB	Blood-Brain Barrier
BBSI	Brain Boundary Shift Integral
BCG	Bacillus Calmette–Guérin
BDI-II	Beck Depression Inventory-Second Edition
BiCAMS	Brief International Cognitive Assessment for Multiple Sclerosis
BMI	Body Mass Index
BPF	Brain Parenchymal Fraction
BRB-N	Brief Repeatable Battery of Neuropsychological tests
BV	Brain Volume
BVL	Brain Volume Loss
BVMTR	Brief Visuospatial Memory Test— Revised
CCL2	CC-chemokine ligand 2 (CCL2)
CD4+T cell	Cluster of Differentiation 4+ T lymphocyte cell
CDC	Center for Disease Control and prevention
CDMS	Clinically Definite Multiple Sclerosis
CI	Cognitive Impairment
CIS	Clinically Isolated Syndrome
CLTR	Consistent Long-Term Retrieval
CNPase	2, 3 -Cyclic Nucleotide 3 Phosphodiesterase
CNS	Central Nervous System
COWAT	Controlled Oral Word Association Test

CSF	Cerebro-Spinal Fluid
CVLT	California Verbal Learning Test
CyPD	Cyclophilin D
DAT1	Dopamine Transporter gene
DI	Depression Inventory
DIR	Double Inversion Recovery
D-KEFS	Delis-Kaplan Executive Function System
DLPFC	Dorso-lateral Prefrontal Cortex
DMT	Disease Modifying Therapies
DSM-IV	Diagnostic and Statistical Manual of Mental Disorders 4
EBV	Ebestein Barr Virus
EDSS	Expanded Disability Status Scale
EFs	Executive Functions
FDA	Food and Drug Administration
FLAIR	Fluid-Attenuated Inversion Recovery
fMRI	Functional Magnetic Resonance Imaging
GA	Glatiramer Acetate
Gd	Gadolinium
Glu receptor	Glutamate receptor
GM	Gray Matter
GM-CSF	Granulocyte Macrophage Colony-Stimulating Factor
H1N1	Influenza A Virus
HBV	Hepatitis B Virus
HLA	Human Leucocyte Antigen
HTTLPR	degenerate repeat polymorphic region in SLC6A4
IFN	Interferon
IMSGC	International Multiple Sclerosis Genetics Consortium
JLO	Judgment of Line Orientation test
LTS	Long-Term Storage

MACFIMS	Minimal Assessment of Cognitive Function in Multiple Sclerosis
MAG	Myelin Associated Glycoprotein
МНС	Major Histo-compatibility Complex
MMPs	Matrix MetalloProteinases
MMSE	Mini-Mental State Examination
MMR	Measles, Mumps, Rubella
MPTP	Mitochondrial Permeability Transition Pore
MRI	Magnetic Resonance Imaging
MS	Multiple Sclerosis
MSIF	Multiple Sclerosis International Federation
mtDNA	Mitochondrial Deoxyribonucleic Acid
NAGM	Normally Appearing Grey Matter
NAWM	Normally Appearing White Matter
NCX	Na-Ca Exchanger
NEDA	No Evidence of Disease Activity
NMSS	National Multiple Sclerosis Society
NO	Nitrous Oxide
NOS	Nitrous Oxide Systems
NTZ	Natalizumab
ON	Optic Neuritis
OXYPHOS	Oxidative Phosphorylation
PASAT	Paced Auditory Serial Addition Test
PBVC	Percentage Brain Volume Change
PHQ-9	Patient Health Questionnaire-9
PPMS	Primary Progressive Multiple Sclerosis
ROS	Reactive Oxygen Species
RRMS	Relapsing Remitting Multiple Sclerosis
S1P1	sphingosine-1 phosphate receptor type 1

SDMT	Symbol Digit Modality Test
SIENAX	Structural Image Evaluation Using Normalization Of Atrophy
SPART	10/36 Spatial Recall Test
SPMS.	Secondary Progressive Multiple Sclerosis
SRT	Selective Reminding Test
SRT	Spatial Recall Test
TRPM4	Transient Receptor Potential Cation Channel Subfamily M Member 4
UVR	Ultra-Violet Rays
VBM	Voxel-Based Morphometry
VGCC	Voltage Gated Ca Channel
WBV	Whole Brain Volume
WCST	Wisconsin Card Sorting Test
WLG	Word List Generation
WM	White Matter
WMS-III	Wechsler memory Scale third edition

List of Figures

No.	<u>Figure</u>	Page
<u>1</u>	Prevalence of Multiple sclerosis by country	15
<u>2</u>	Multiple sclerosis as a complex neurological condition affecting CNS.	19
<u>3</u>	Mechanisms of smoking-associated processes that contribute to risk of MS	23
<u>4</u>	Lifestyle and environmental factors affecting the immune system to trigger and/or perpetuate multiple sclerosis	31
<u>5</u>	Components of multiple sclerosis pathogenesis	36
<u>6</u>	Plaque formation in multiple sclerosis	37
<u>7</u>	Immuno-pathogensis of MS	42
<u>8</u>	The prevailing hypothetical sequence of events eventually leading to neuro-axonal degeneration in multiple sclerosis	43
9	Neuronal injury and counteracting pathways in chronic CNS inflammation	44
<u>10</u>	The most common presenting symptoms in MS	49
<u>11</u>	Description of the executive functions	57
<u>12</u>	Connectivity in the brain and cognitive function	61
<u>13</u>	White and gray matter pathology in MS	65
<u>14</u>	Sample of the NeuroQuant Report	104
<u>15</u>	Comparison between patients and control as regard age	109
<u>16</u>	Comparison between patients and control as regard sex	110
<u>17</u>	Description of family history of medical diseases in patients group	111

List of Figures

No.	<u>Figure</u>	<u>Page</u>
<u>18</u>	Description of age of onset of the disease in patients group	112
<u>19</u>	Description of duration of illness of the disease in patients group	113
<u>20</u>	Description of number of relapses in patients group	114
<u>21</u>	Description of DMD in patients group	115
<u>22</u>	Description of EDSS in patients group	116
<u>23</u>	Description of T1 black holes in patients group	117
<u>24</u>	Description of T1 black holes in patients group	118
<u>25</u>	Description of T2 juxta-cortical in patients group	118
<u>26</u>	Description of T2 peri-ventricular in patients group	119
<u>27</u>	Description of T2 infra-tentorial in patients group	119
<u>28</u>	comparison between patients and control as regard Neuroquant WBV	120
<u>29</u>	comparison between patients and control as regard and WBV % of ICV	121
<u>30</u>	Description of lateral ventricles volume in patients group	122
<u>31</u>	Description of lateral ventricles volume and its% of ICV in patient group	123
<u>32</u>	Description of thalamic volume in patients group	124
<u>33</u>	Description of thalamic volume and its % of ICV in patients group	125

List of Figures

No.	<u>Figure</u>	<u>Page</u>
<u>34</u>	Comparison between patients and control as regard thalamic volume as a% of WBV	126
<u>35</u>	Description of MMSE in patients group	127
<u>36</u>	Comparison between patients and control as regard Wechsler memory scale parameters	129
<u>37</u>	Comparison between patients and control as regard conceptual responses in WCST	130
<u>38</u>	Comparison between patients and control as regard PHQ9	131
<u>39</u>	Comparison between T1 black holes lesions as regard orientation, mental control and DS backward	132
<u>40</u>	Comparison between T2 juxta-cortical lesions as regard orientation, mental control and DS backward	133
<u>41</u>	Comparison between T2 periventricular lesions as regard orientation, mental control and DS backward	134
<u>42</u>	Comparison between T2 infra-tentorial lesions as regard orientation, mental control and DS backwards.	135
<u>43</u>	Positive correlation between Neuroquant WBV vs orientation in patients group	136

List of Tables

No.	<u>Table</u>	<u>Page</u>
1	Components of executive functions	59
<u>2</u>	Neuro-psychometric batteries commonly used in multiple sclerosis	77
<u>3</u>	2010 revision of the McDonald criteria	79
4	Comparison between patients and control as regard age	109
<u>5</u>	comparison between patients and control as regard sex	110
<u>6</u>	Description of family history of medical diseases in patients group	111
7	Description of age of onset of the disease in patients group	112
<u>8</u>	Description of duration of illness of the disease in patients group	113
<u>9</u>	Description of number of relapses in patients group	114
<u>10</u>	Description of Disease Modifying Drugs DMDs in patients group	115
<u>11</u>	Description of EDSS in patients group	116
<u>12</u>	Description of T1 and T2 in patients group	117
<u>13</u>	Comparison between patients and control as regard Neuroquant Whole Brain Volume WBV and their % of Intra Cerebral Volume ICV	120
<u>14</u>	Description of lateral ventricles volume in patients group	122

List of Tables

No.	<u>Table</u>	<u>Page</u>
<u>15</u>	Description of thalamic volume in patients group	124
<u>16</u>	Comparison between patients and control as regard thalamic volume as a% of WBV	126
<u>17</u>	Comparison between patients and controls as regard MMSE	127
<u>18</u>	Comparison between patients and controls as regard Wechsler memory scale	128
<u>19</u>	Comparison between patients and control as regard conceptual responses in WCST	130
<u>20</u>	Comparison between patients and control as regard PHQ9	131
<u>21</u>	Comparison between T1 black holes lesions as regard orientation, mental control and DS backward	132
22	Comparison between T2 juxtacortical lesions as regard orientation, mental control and DS backward	133
<u>23</u>	Comparison between T2 peri-ventricular lesions as regard orientation, mental control and DS backward	124
<u>24</u>	Comparison between T2 infra-tentorial lesions as regard orientation, mental control and DS backward	135
<u>25</u>	Correlation study between Neuroquant WBV and (orientation, mental control and DS backwards). in patients goup	136

List of Tables

No.	<u>Table</u>	<u>Page</u>
<u>26</u>	Correlation study between Neuroquant WBV and its % of ICV and (orientation, mental control and DS backward) in patients group	137
<u>27</u>	Correlation study between thalamic volume and (orientation, mental control and DS backward) in patients group	138
<u>28</u>	Correlation study between thalamic volume % of ICV and (orientation, mental control and DS backward) in patients group	139