

Effect of Adding Magnesium Sulphate to Bupivacaine in Ultra-Sound Guided Transversus abdominus Plane Block (TAP) as Post Operative Analgesia in Lower Abdominal Surgeries

Thesis

Submitted for Partial Fulfillment of Master Degree in **Anesthesia**

By

Karim Ahmed Ismail Ahmed Soliman

M.B.B.Ch, Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Raouf Ramzy Gadalla

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Prof. Ashraf El Sayed EL Agamy

Assistant Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Mohammed Abdel Fattah Nosier

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Faculty of Medicine, Ain Shams University

2019

مسمرالله الرحمين الرحيم

صدق الله العظيم [سورة: التوبة - الآية: ١٠٥]

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Raouf Ramzy Gadalla**, Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof.** Ashraf El Sayed EL Agamy, Assistant Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his sincere efforts, fruitful encouragement.

I am deeply thankful to **Dr. Mohammed Abdel Fattah Mosier**, Lecturer of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his great help, outstanding support, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Karim Ahmed Ismail Ahmed Soliman

Tist of Contents

Title	Page No.
List of Tables	5
List of Figures	
List of Abbreviations	
Introduction	1 -
Aim of the Work	
Review of Literature	
Patients and Methods	
Results	
Discussion	
Conclusion	
Summary	
References	
Arabic Summary	

List of Tables

Table No	. Title	Page No.
Table 1:	Systemic responses to surgery	19
Table 2:	Principal hormonal responses to surge	ery20
Table 3:	Opioid receptors and their actions	34
Table 4:	Comparison between group I and grou regard demographic data	p II as 60
Table 5:	Comparison between group I and gr regarding heart rate pre, intra and operative	oup II d post 63
Table 6:	Comparison between group I and grou regard mean arterial blood pressur intra and postoperative	p II as e pre, 65
Table 7:	Comparison between group I and grou regard VAS pain score postoperative	p II as 68
Table 8:	Comparison between group I and grou regard time for 1st and 2nd rescue dos	ıpII as ses69
Table 9:	Comparison between group I and grou regard number of analgesic dos different time intervals	p II as es at 70

List of Figures

Fig. No.	Title	Page No.
Figure 1:	Diagram of Ascending Pain Pathway Aldrich)	r (Sigma 27
Figure 2:	Shows NRS, VRS and VAS a assessment scores	s pain 31
Figure 3:	Basic local anesthetic structure	
Figure 4:	A cross-section of the abdominal wall	layers49
Figure 5:	Lumbar triangle of Petit between oblique muscle and latissimusdorsi	external 50
Figure 6:	Anatomical description of the tria Petit (lateral view)	ungle of 50
Figure 7:	The patient is in the supine position TAP block (Th10-Th12)	, aUSG- 52
Figure 8:	Image of the abdominal wall	53
Figure 9:	Local anesthetic injection in tran abdominis plane	nsversus 54
Figure 10:	Comparison between group I and g regarding age of the studied cases	group II 61
Figure 11:	Comparison between group I and g regarding sex of the studied cases	group II 61
Figure 12:	Comparison between group I and g regarding BMI of the studied cases	group II 62
Figure 13:	Comparison between group I and g regarding ASA score of the studied ca	group II ses62
Figure 14:	Comparison between group I and gro regard heart rate pre and intraoperat	up II as ive64
Figure 15:	Comparison between group I and gro regard heart rate postoperative	up II as 64

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 16:	Comparison between group I a regarding mean arterial blood p and intraoperative	and groupII pressure pre 66
Figure 17:	Comparison between group I as regarding mean arterial blood	nd group II 67
Figure 18:	Comparison between group I and regard VAS score postopertively.	group II as 69
Figure 19:	Comparison between group I and regard number of analgesic doses time intervals.	group II as at different 71
Figure 20:	Comparison between group I and regard total doses of rescue analg	group II as esia72

Tist of Abbreviations

Abb.

Full term

%	Percent
δ	Delta
γ	Gamma
К	Kappa
٥	Degree
μ	Mue/Micron
μg	Microgram
1ry	Primary
5-HT	Serotonin
<i>ABP</i>	Arterial Blood Pressure
ACTH	Adrenocortico-trophic hormone
ASA	American Society of Anesthesiologists
AVP	Arginine vasopressin.
<i>bpm</i>	Beats per minute
<i>Ca</i> ++	Calcium
<i>CGRP</i>	Calcitonin Gene-Related Peptide
<i>cm</i>	Centimeter
СМ	Costal margin
CNS	Central Nervous System
<i>COO</i>	Ester linkage
COX2	Cyclooxygenase2
DBP	Diastolic Blood Pressure
<i>DM</i>	Diabetes mellitus
DRG	Dorsal Root Ganglion
<i>E</i>	Enkephalinergic interneurons
<i>ECG</i>	Electrocardiogram
ed	Edition
ЕОМ	External oblique muscle
et al	And colleagues
<i>FDA</i>	Food and Drug Administration
FSH	Follicle-stimulating hormone
<i>G</i>	Gauge
<i>G</i>	Gram

Tist of Abbreviations cont...

Abb.

Full term

GABA	Gamma Amino Butyric Acid
<i>HR</i>	. Heart Rate
hr	Hour
hrs	Hours
HS	Highly significant
HTN	Hypertension
<i>I.M</i>	Intramuscular
<i>I.V</i>	Intravenous
IASP	International Association for the Study of
	Pain
<i>IC</i>	. Iliac crest
<i>IL-1β</i>	Interleukin-1
<i>IL-6</i>	Interleukin-1
<i>IOM</i>	Internalobliqmuscle
J	Journal
Kg	Kilogram
$\widetilde{L_{1-5}}$. Lumbar spinal roots
LAs	Local Anesthetics
LH	Luteinizing hormone
<i>mA</i>	Milliamperes
Mg	Milligram
min	Minute
<i>Ml</i>	Milliliter
mmHg	Millimeters of Mercury
-NHCO	Amide linkage
NHS	. The National Health Service
NMDA	N-Methyl-D-Aspartate
NMDA	N-Methyl-D-Aspartate
NRS	Numeric rating scale
NS	Non-significant
NSAIDs	Non steroidal anti-inflammatory drugs
<i>P</i>	Probability value
<i>PC</i>	Peritoneal cavity

Tist of Abbreviations cont...

Abb.

Full term

PGE2	Prostaglandins E2
<i>pp</i>	Pages
SC	Subcutaneous tissue
SD	Standard Deviation
Sig	Significance
SpO_2	Peripheral Oxygen Saturation
SSR	Surgical Stress Response
T_{1-12}	Thoracic spinal roots
<i>TAM</i>	Transversusabdominis muscle
TAP block	Transversusabdominis plane block
<i>TENS</i>	Transcutaneous Electrical Nerve
	Stimulation
<i>TSH</i>	Thyroid-stimulating hormone
<i>USG</i>	Ultra Sound Guidance
VAS	Visual Analogue Scale
VRS	Four-point verbal rating scale
<i>Vs.</i>	Versus
<i>A</i>	Alpha
<i>B</i>	Beta

INTRODUCTION

Transversus abdominus block considered as an ideal approach in alleviating postoperative pain, especially when used as a part of multi modal analgesia regimen as has been reported by the American society of Regional Anesthesia (*Sharkey et al., 2014*).

The duration of TAP block is limited to the effect of administered local anaesthetics (LAs). However, recently adjuvants such as epinephrine, ketamine and clonidine are added to LA solution in concentrations advocated for other peripheral blocks to prolong the effect of TAP block with promising results. Evidence supporting the presence of N-methyl-D-aspartate (NMDA) receptors in skin and muscles have led to the use of magnesium sulphate (MgSO₄) (NMDA antagonist) via different routes for brachial plexus block (*Lee et al., 2012*) and via neuraxial route.

Beside the effect of magnesium sulphate on NMDA receptor, its anti-nocioceptive could be explained also by being regulator for ca influx inside the cells (*Agrawal et al., 2014*).

NMDA receptors found in many parts of the body including the nerve endings, and plays a well-defined role in modulating pain and number of inflammatory responses (*Barbosa et al., 2010*). NMDA receptor anatagonists could prevent central

sensitization that occur due to the priephral nociceptive stimulation (*Buvanendran et al., 2007*).

Local anesthetics like bupivacaine act in different way as they bind to intracellular portion of voltage –gatted sodium channels.

AIM OF THE WORK

In this thesis we aim to study the effect of adding magnesium sulphate to bupivacaine in ultrasound guided TAP block for lower abdominal surgeries.

Review of Literature

Pain Pathway

Definition:-

Pain is a subjective experience. The International Association for the Study of Pain (IASP) defines pain as an "unpleasant sensory and emotional experience associated with actual or potential tissue damage or described in terms of such damage. This definition demonstrates that pain, as well as having physiological basis, has also psychological or subjective component (*LeResche et al., 2005*).

Pain can be adjunct and simultaneous to nociception, the system which carries information to the spinal cord and brain about damage or near-damage in tissue. Nociception conveys somatic information without conscious awareness, while pain is a perception of sensorial information. As a part of the body's defense system, pain triggers mental and physical behaviors that seek to end the painful experience (*Wahezi et al., 2013*).

Pain is also a feedback system that promotes learning, making repetition of the painful situation less likely. The nociceptive system may transmit signals that trigger the sensation of pain, it is a critical component of the body's ability to react to damaging stimuli and it is part of a rapid-warning relay instructing diverse organs and principally the central nervous system to initiate reactions for minimizing injury (*Wahezi et al., 2013*).

Pain can be classified into

- 1) Acute pain primarily due to nociception
- 2) Chronic pain which may be due to nociception pain pathway but in which psychological and behavioral factors play a major role (*Aasvang et al., 2016*).

Acute pain is a signal of impending or ongoing tissue damage that provokes the patient to seek treatment or escape from the painful stimulation. Its most common forms include post traumatic, postoperative and obstetrical pain, as well as that associated with acute medical illness such as myocardial infarction, pancreatitis and renal calculi (*Gregory et al., 2016*).

Chronic pain is defined as pain that persists in spite of therapy beyond the usual course of an acute disease or after a reasonable time for healing to occur, This period varies between one to six months in most definitions. Chronic pain may result from peripheral nocireceptors or peripheral or central nervous system dysfunction (*Aronoff et al., 2016*).

Traditionally, the distinction between acute and chronic pain has relied upon an interval of time from the onset, the pain that lasts less than 30 days is called acute while that lasting more than six months is chronic type of pain. Sub-acute pain is the one which lasts from one to six months (*Walters et al., 2015*).