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Preface

In 1890 Richard Dedekind was working on a revised and enlarged edition of Dirichlet’s

Vorlesungen ber Zahlentheorie (Lectures in the theory of numbers), and asked himself

the following question: Given three subgroups A, B, C of an abelian group G, how many

different subgroups can you get by taking intersections and sums, e.g., A+B, (A+B)∩C,

etc. In looking at this and related questions, Dedekind was led to develop the basic the-

ory of lattices, which he called ”Dualgruppen”. In fact, Dedekind was ahead of his time

in making the connection between modern algebra and lattice theory, and so nothing

much happened in lattice theory for the next thirty years. Then, with the development of

universal algebra in the thirties of the last century, Garrett Birkhoff started the general

development of lattice theory. Birkhoff himself, Valèere Glivenko, Karl Menger, John von

Neumann, Oystein Ore, and others had developed enough of this new field for Birkhoff to

attempt to sell it to the general mathematical community, which he did with astonishing

success in the first edition of ”Lattice Theory”, [12]. Nowadays, the tentacles of lattice

theory extend into algebra, analysis, topology, logic, combinatorics, linear algebra, geom-

etry, category theory, probability and computer science, see [27], [31], [32], and [39].

De Morgan Stone algebras (or simply MS-algebras) have been first introduced by T.S.

Blyth and J.C. Varlet as a common abstraction of de Morgan algebras and Stone

algebras ([15], [17]) . The triple construction of MS-algebras by means of Kleene

algebras and distributive lattices has been established and investigated by Blyth and Var-

let in [14]. Moreover, a very interesting quadruple representation of the MS-algebras has

been proved to be a very satisfactory tool in characterizing and analyzing the structure

of MS-algebras, [16]. T. Katrinak added new ideas to the theory of MS-algebras via
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introducing and characterizing the class of modular double S-algebras, [37]. In 1988, a

marvelous comparison between triples and quadruples has been established by T. Ka-

trinak and K. Mikula in [38]. Continuing this clue; characterizations of ideals, filters,

fixed points and congruences of MS-algebras have been deduced, see [19], [20], [29], and

[43]). An interesting analysis of generalized MS-algebras which are non-distributive MS-

algebras with has been handled in [2], [3], [42], and [44].

The class of doubleMS-algebras and the class of regular doubleMS-algebras have been

proved to be a very interesting and convenient subclasses of the class of MS-algebras, [4],

[18], [26].

A. Badawy, D. Guffova and M. Haviar, [6], established an important characteriza-

tion of decomposable MS-algebras in terms of decomposable MS-triples. Moreover, they

deduced a one-to-one correspondence between decomposable MS-algebras and decompos-

able MS-triples. Congruences, homomorphisms, subalgebras, and filters of decomposable

MS-algebras have been studied intensively and extensively in [5] and [8].

In this thesis we try to dig deeper in the theory of MS-algebras and double MS-

algebras. The main objective of this thesis is threefold. First, we aim to investigate

completeness properties of decomposable MS-algebras. Second, we aim to construct and

characterize decomposable double MS-algebras. Third, we aim to study direct products

and ideals of decomposable MS-algebras.

This thesis consists of four chapters which are organized as follows:

In the first chapter we assemble the preliminaries and basic material to be used in the

thesis. We provide a brief survey of the basic definitions and results concerning Lattices,

MS-algebras, decomposable MS-algebras and double MS-algebras. For a sake of com-

pleteness, some important constructive proofs are included.
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The second chapter consists of three sections. In the first section we introduce and in-

vestigate the notions of complete decomposable MS-algebras and complete decomposable

MS-triples. our main result of this section is that a decomposable MS-algebra L con-

structed from the decomposable MS-triple (M,D,ϕ) is complete if and only if the triple

(M,D,ϕ) is complete. In the second section we introduce complete triple homomorphisms

of complete decomposable MS-algebras. Actually, we provide a characterization of com-

plete homomorphisms of complete decomposable MS-algebras in terms of complete triple

homomorphisms. The third section is devoted to study some fill-in problems concerning

decomposable MS-triples. Roughly speaking, given a complete de Morgan algebra M

and a conditionally complete distributive lattice D, a fill-in problem is concerned with

constructing a homomorphism ϕ so that (M,D,ϕ) is a complete decomposable MS-triple.

The third chapter is divided into four sections. In the first section we introduce and

study the notion of decomposable double MS-algebras. We obtain necessary and sufficient

conditions for a decomposableMS-algebra to become a decomposable doubleMS-algebra.

In the second section, we construct decomposable double MS-algebras from decompos-

able MS-quadruples as a generalization of the construction of decomposable MS-algebras

by means of decomposable MS-triples. We show that there exists a one-to-one correspon-

dence between decomposable double MS-algebras and decomposable MS-quadruples. We

construct decomposable double K2-algebras using decomposable K2-quadruples and dou-

ble Stone algebras using Stone quadruples. In the third section we confine our attention

to the study of subalgebras of decomposable double MS-algebras. One of the main results

in this section is the characterization of the greatest Stone subalgebra of a decomposable

double MS-algebras. The fourth section is devoted to investigate isomorphisms of de-

composable double MS-algebras. We prove that two decomposable double MS-algebras

are isomorphic if and only if the associated MS-quadruples are isomorphic.

The fourth chapter consists of three sections. In the first section we prove some re-

sults on subalgebras of the direct product of decomposable MS-algebras. In the second

section we investigate homomorphic image and inverse homomorphic image of subalge-
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bras of decomposable MS-algebras. One of the main results is the proof of a universal

mapping property for direct products of decomposable MS-algebras. In the third section

we introduce and investigate the notion of MS-ideals of MS-algebras. We study the re-

lation between MS-ideals and some other known ideal of MS-algebras. We round off by

deducing the influence of homomorphisms on MS-ideals as well as the relation between

congruences and MS-ideals.

The main results extracted from this thesis are included in the following publications:

(1) Ahmed Gaber, Abdel Mohsen Badawy and Salah El-din S.Hussein, On decomposable

MS-algebras, accepted for publication in Italian Journal of Pure and Applied Mathemat-

ics.

(2) Abdel Mohsen Badawy, Essam El-seidy and Ahmed Gaber, MS-ideals ofMS-algebras,

Applied Mathematical Sciences, Vol. 13, 2019, no. 7, 347 - 357 .

(3) Abdel Mohsen Badawy and Ahmed Gaber, Complete decomposable MS-algebras,

accepted for publication in Journal of the Egyptian Mathematical Society.

(4) Abdel Mohsen Badawy, Salah El-din S.Hussein and Ahmed Gaber, Quadruple con-

structions of decomposable double MS-algebras, submitted for publication.
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Chapter 1

Preliminaries

In this chapter we introduce the background material which we need in this thesis.

However, we just provide a brief survey of the basic definitions and elementary results

concerning lattices, MS-algebras, decomposable MS-algebras and double MS-algebras.

For a sake of completeness, some important constructive proofs are included. For details

on lattices we refer to [9], [11], [23], and [33] ; for details onMS-algebras and decomposable

MS-algebras we refer to [6], [15], [21], [22], and [46]; for details on ideals and filters of

MS-algebras we refer to [1], [7], and [40]; and for details on double MS-algebras we refer

to [13], [18], and [34].

1.1 Lattices and distributive lattices

Definition 1.1.1 A lattice is an algebra (L,∧,∨) satisfying, for all x, y, z ∈ L,

(1) x ∧ x = x and x ∨ x = x,

(2) x ∧ y = y ∧ x and x ∨ y = y ∨ x,

(3) x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∨ (y ∨ z) = (x ∨ y) ∨ z,

(4) x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x.

The fourth pair of axioms, called the absorption law, play an important role in the

proof of the following theorem. This theorem reveals the equivalence between the notion

of a lattice as an algebraic structure and the notion of a lattice as a partially ordered set.
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Theorem 1.1.2 In a lattice L, define x 6 y if and only if x ∧ y = x. Then (L,6) is

an ordered set in which every pair of elements has a greatest lower bound (infimum) and

a least upper bound(supremum). Conversely, given an ordered set L with that property,

define x ∧ y = inf(x, y) and x ∨ y = sup(x, y). Then (L,∧,∨) is a lattice.

In light of the Theorem 1.1.2, we see that, for any a, b ∈ L, a 6 b if and only if a∨b = b.

Equivalently, a 6 b if and only if a∧ b = a. Moreover, Theorem 1.1.2 yields the following

definition of a lattice.

Definition 1.1.3 A lattice is a partially ordered set (L,6) such that inf{a, b} and sup{a, b}

exist for any a, b ∈ L.

Definition 1.1.4 A lattice L is bounded if it has both 1 (the greatest element) and 0 (the

least element).

Example 1.1.5

(1) The powerset of a set forms a lattice, with inclusion being the partial order. Join and

meet are union and intersection, respectively.

(2) The finite subsets of a set form a lattice, with inclusion being the partial order. Join

and meet are union and intersection, respectively.

(3) The partitions of a set form a lattice, where a > b iff a is a refinement of b.

(4) The subgroups of a group form a lattice, with inclusion being the partial order. The

join of two subgroups is the subgroup generated by the two subgroups, and the meet of two

subgroups is their intersection.

(5) The normal subgroups of a group form a lattice, with inclusion being the partial order.

The join of two normal subgroups is the product of the two normal subgroups, and the

meet of two normal subgroups is their intersection.

(6) The subrings of a ring form a lattice, with inclusion being the partial order. The join

of two subrings is the subring generated by the two subrings, and the meet of two subrings

is their intersection.

(7) The ideals of a ring form a lattice, with inclusion being the partial order. The join of

two ideals is their sum, and the meet of two ideals is their intersection.
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(8) The open subsets of a topological space form a lattice, with inclusion being the partial

order. Join and meet are union and intersection, respectively.

(9) The closed subsets of a topological space form a lattice, with inclusion being the partial

order. Join and meet are union and intersection, respectively.

(10) Integers form a lattice, with its usual ordering. In fact, any set with a total order is

a lattice.

(11) Positive integers form a lattice, where a > b iff a is a multiple of b. Join and meet

are the least common multiple and greatest common divisor, respectively.

(12) Ordered pairs of integers form a lattice, where (a, b) > (c, d) iff a > c and b > d. We

have (a, b) ∨ (c, d) = (max{a, c},max{b, d}), (a, b) ∧ (c, d) = (min{a, c},min{b, d}).

(13) Any finite poset is a lattice iff it has a maximum and a minimum.

(14) The sublattices of a lattice together with the empty set form a lattice, with inclusion

being the partial order. The join of two sublattices is the sublattice generated by the two

sublattices, and meet of two sublattices is their intersection.

Definition 1.1.6 A lattice L is called complete if infLH and supLH exist for each

φ 6= H ⊆ L.

Definition 1.1.7 A lattice L is called conditionally complete if every upper bounded

subset of L has a supermum in L and every lower bounded subset of L has an infimum in

L.

Note that any complete a lattice is a conditionally complete lattice.

Example 1.1.8

(1) The powerset of a set is a complete lattice

(2) The subgroups of a group form a complete lattice

(3) The closed subsets of a topological space form a complete lattice

11



Definition 1.1.9 Let L and L1 be lattices. Let f : L → L1 be a mapping and let a, b be

any two elements of L. Then,

(1) f is a ∨-homomorphism if (a ∨ b)f = (a)f ∨ (b)f .

(2) f is a ∧-homomorphism if (a ∧ b)f = (a)f ∧ (b)f .

(3) f is a lattice homomorphism if it is both ∨-homomorphism and ∧-homomorphism.

(4) A lattice monomorphism or a lattice embedding is an injective lattice homomorphism.

(5) A lattice epimorphism is a surjective lattice homomorphism.

(6) A lattice endomorphism is a lattice homomorphism from a lattice L into itself.

(7) A lattice isomorphism is a bijective lattice homomorphism.

Definition 1.1.10 A lattice homomorphism h : L → L1 of a complete lattice L into a

complete lattice L1 is called complete if

(infLH)h = infL1 Hh and (supLH)h = supL1
Hh for each φ 6= H ⊆ L.

Definition 1.1.11 Let L and L1 be lattices. A lattice homomorphism f : L → L1 is

called a (0, 1)-homomorphism if (0)f = 0 and (1)f = 1.

Definition 1.1.12 Two lattices L and L1 are isomorphic (written L ' L1) if there is an

isomorphism between them .

Remark 1.1.13 if Φ is a statement about a lattice, and we replace all occurrences of 6

by > (or ∧ by ∨), and vice versa, we get the dual statement of Φ . This is known as The

duality principle and is based on the simple observation that the definition of a lattice is

self-dual. That is, if L is a lattice, then its dual Ld is also a lattice.

Definition 1.1.14 A sublattice S of a lattice L is a non empty subset of L, such that

for every pair of elements a, b ∈ S both a ∨ b and a ∧ b are in S where ∨ and ∧ are the

lattice operations of L

Definition 1.1.15 A sublattice S of L is called a bounded sublattice if it has both 1

(the greatest element) and 0 (the least element) of L.
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Definition 1.1.16 Let L be a lattice. Then,

(1) an ideal I of L is a nonempty subset of L such that,

(i) a, b ∈ I ⇒ a ∨ b ∈ I,

(ii) a ∈ I, x 6 a⇒ x ∈ I for all x ∈ L.

(2) Dually, a filter F of L is a nonempty subset of L such that,

(i) a, b ∈ F ⇒ a ∧ b ∈ F ,

(ii) a ∈ F, x > a⇒ x ∈ F for all x ∈ L.

The set of all ideals of L is denoted by I(L) and the set of all filters of L is denoted by F (L).

Definition 1.1.17 Let L be a lattice. Then,

(1) An ideal I of L is the principal ideal generated by an element a ∈ L, written

I = (a], ifI= {x ∈ L : x 6 a}.

(2) Dually, a filter F of L is the principal filter generated by an element a ∈ L, written

F = [a), ifF= {x ∈ L : x > a}.

(3) A proper ideal I of L is maximal if for any ideal J of L,

I ⊆ J ⊆ L⇒ J = I or J = L.

(4) Dually, a proper filter F in L is maximal if for any filter G of L,

F ⊆ G ⊆ L⇒ G = F or G = L.

(5) A proper ideal I of L is prime if for any a, b ∈ L,

a ∧ b ∈ I ⇒ a ∈ I or b ∈ I.

(6) Dually, A proper filter F of L is prime if for any a, b ∈ L,

a ∨ b ∈ I ⇒ a ∈ F or b ∈ F.
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Theorem 1.1.18 The following two identities are equivalent in any lattice L for all

x, y, z ∈ L,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Definition 1.1.19 A lattice L is distributive if for all x, y, z ∈ L,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Example 1.1.20

(1) The lattice of subsets of a set X is a distributive lattice since

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C), for all A,B,C ⊆ X.

(2) Consider the lattice of subgroups of the Klein four group defined by

V4 = 〈a, b : a2 = b2 = (ab)2 = e〉. Let c = ab.Then 〈a〉 ∧ (〈b〉 ∨ 〈c〉) = 〈a〉 ∧ V4 = 〈a〉,

while (〈a〉 ∧ 〈b〉) ∨ (〈a〉 ∧ 〈c〉) = 〈e〉 ∨ 〈e〉 = 〈e〉, the trivial subgroup. So, the lattice is not

distributive.

Theorem 1.1.21 [33] A lattice L is distributive if L does not contain a sublattice of

either of the form M3(diamond) or of the form N5(pentagon)

y

1

0

x z

M3

0

z

1

x

y

N5

Theorem 1.1.22 Let L be a lattice. Then

(1) L is distributive if and only if I(L) is distributive.
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