

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electronics Engineering and Electrical Communications

Large Scale Multiple Antenna System

A Thesis submitted in partial fulfillment of the requirements of Doctor of Philosophy (Electrical Engineering)

by

Mohamed Fathy Mohamed Abo Sree Ali

Master of Science (Electrical Engineering) Faculty of Engineering, AASTMT Cairo Branch, 2013

Supervised By

Prof. Hadia Mohamed Said El Hennawy Prof. Mohamed Hassan Abd El Azim Dr. Wael Swelam

Cairo, June 2019

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electronics Engineering and Electrical Communications

"Large Scale Multiple Antenna System"

by

Mohamed Fathy Mohamed Abo Sree Ali

Master of Science (Electronics and Communication) Faculty of Engineering, Arab Academy For Science and Technology Maritime Transportation, 2013

Name and affiliation	Signature
Prof. Dr Abdel Maged Mahmoud Allam Electronics & Communications Dept Faculty of Engineering, German University in Cairo (GUC).	
Prof. Dr Abdel Haleem Abdel Naby Zekry Electronics & Communications Dept Faculty of Engineering, Ain Shams University(ASU).	
Prof. Dr Hadia Mohamed Saed El Hennawy Electronics & Communications Dept Faculty of Engineering,Ain Shams University(ASU).	
Prof. Dr Mohamed Hassan Abdel Azeem Electronics & Communications Dept Faculty of Engineering,Arab Academy for science , Technology Maritime and transportation (AASTMT).	 Date:27 June 2019

Statement

This thesis is submitted as a partial fulfillment of Doctor of Philosophy in Electrical Engineering, Faculty of Engineering, Ain shams University. The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

> Mohamed Fathy Mohamed Abo Sree Ali Signature

.....

Date: June 2019

Researcher Data

Name: Mohamed Fathy Mohamed Abo Sree Ali

Date of Birth: 01/06/1986 **Place of Birth:** Cairo, Egypt **Last academic degree:** Master of Science **Field of specialization:** Communication **University issued the degree :** AASTMT Cairo Branch, Egypt **Date of issued degree :** May 2013

Currentjob: Teaching Assistant

Key Words

Metamaterials ,Large Sclae Antenna Systems,Fractal,Leaky ,Ultra wide band ,CRLH, 5G ,Inverted F, Triple bands ,Quad bands ,scaling and Radar applications

Abstract

Faculty of Engineering – Ain Shams University Electronics and Communication Engineering Department

Thesis title: "Large Scale Multiple Antenna System" Submitted by: Mohamed Fathy Mohamed Abo Sree Ali

Degree: PHD

Providing inexpensive high data rate access presents many challenges to satisfy the everincreasing capacity demand and quality of service. Large-Scale Antenna Systems has a potential to realize cost effective high data rate access solution to User terminals. Various designs of antennas operating at different frequency ranges are proposed, and studied to serve a large scope of applications including the 4G, Radar and other potential applications. A study of the evolution of the modern mobile technology will take place, starting with the 1st generation of mobile communication and going on through with the Second, third and fourth generation of mobile technology, reaching the new and futuristic technology of the 5th Generation. Also, studying the metamaterials, their classifications, the approached designs, the various applications and their advantages will take place. Besides that, the different feeding techniques of the microstrip is discussed.

The design, implementation and analysis of a Patch antenna with Different Fractal Shapes is proposed. Where a conventional patch antenna having a rectangular shape, and with dimension of 9.2 mm x 6.94 mm is fabricated. It is implemented on a FR-4 lossy substrate material with relative permittivity $\epsilon_r = 4.3$, thickness of 1.6 mm and loss tangent of 0.025. It is fed using a microstrip line excitation technique with dimension of 6 mm x 3.11 mm. It operates over a frequency band from 8 GHz to 12 GHz with central frequency 10 GHz. The performance properties of the antenna such as resonant frequency, radiation pattern, and gain were examined by simulation. The design is implemented through CST microwave studio and measured through network analyzer. In Addition, a design and fabrication of ultra-wideband leaky wave metamaterial antennas are suggested and reviewed. The design, analysis and fabrication of

Xii

conventional and Metamaterial leaky wave antennas and the effects of utilizing composite right/left handed structure on bandwidth, gain and beam steering are reflected. The antennas are simulated using the CST microwave studio, fabricated on Roger 5880 and measured using the network analyzer. There is a good agreement between the measured and simulated results, showing that the antenna could be used for radar applications and broadband wireless communications. A large bandwidth was attained. Thus, broadband leaky wave antennas are very attractive and useful for radar systems and future broadband wireless communications.

Moreover, an ultra-wideband microstrip antenna for 4G applications is presented. The antenna consists of dual elements, with a total size of 58 mm X24 mm. A decoupling circuit is added to the design; afterwards the spacing between the elements is adjusted. An element covers the range between 3.29 and 6.9 GHz, while the other covers the frequency range from 8.76 GHz to 13.27 GHz using defective ground. A total bandwidth of approximately 8.2 GHz was achievable and the minimum value of the return loss measured was around the -18 dB. The antenna's structure and the parametric study, including the reflection coefficients, gain, coupling and decoupling, will be discussed further in this work.

Finally, an inverted-F antenna is discussed to be implemented in the Radar application operating at the millimeter wave range. The design and analysis of the antenna is done using the CST software to study its parameters. Also, a scaled version of it is proposed in order to implement at lower frequencies, and measure it through the network analyzer. The feeding of the simulated Inverted-F antenna is done using a coaxial cable, while the antenna is executed on a Rogers 5880 Substrate, with height 0.381.

Acknowledgment

First of all, thanks to ALLAH for sustaining me throughout my PHD's journey, I am very grateful to have one of the most knowledgeable and inspiring supervisors , Prof. Dr.Hadia El hennawy, Prof.Dr Mohamed Hassan Abd el Azim and Dr Wael Swelam . In addition to Prof. Dr A. M. M. A. Allam for his assistance during the fabrication process . Their advices and guidance have been essential for this PHD from the beginning. Finally, I would also like to thank my whole family , my friends, my wife and my children.

Contents

Abstract	xii
Contents	xiv
List of Figures	xviii
List of Tables	xxii
Abbreviations	xxiii
Symbols	xxv
1 Introduction 1	
1.1 Introduction 1	
1.2 Objective 1	
1.3 Problem statement	
1.4Thesis Organization2	
2 Evolution of Generations, Feeding Techniques of Microstrip and Meta-	
material structure	3
2.1 Introduction on Evoultuion	
2.1.1 1G technology 3	
2.1.1.1 Public switched telephone network	
2.1.1.2 Features of 1G 4	
2.1.1.3 Standards 4	
2.1.1.4 Disadvantages 5	
2.1.2 2G technology	
2.1.2.1 Standards	
2.1.2.2 GSM	
2.1.2.3 CDMA IS-95	
2.1.2.4General packet radio service8	
2.1.3 3G technology WCDMA CDMA 2000 8	
2.1.3.1 Standards	
2.1.3.2 3GPP	
2.1.3.3 3GPP2	
2.1.4 4G technology	
2.1.4.1 Features10	
2.1.4.2 OFDM10	

			2.1.4.3	MIMO	10
			2.1.4.4	Handover and coverage	11
			2.1.4.5	Disadvantages	11
		2.1.5	5G techr	lology	12
			2.1.5.1	Millimeter waves	12
			2.1.5.2	Micro cells	13
			2.1.5.3	Massive MIMO	13
			2.1.5.4	Device to device communication	14
			2.1.5.5	Network virtualization	15
			2.1.5.6	5G future	16
	2.2	Some	feeding te	chniques of microstrip	17
		2.2.1	Introduc	:tion	17
		2.2.2	Fe	eding Techniques to Microstrip Anetennas	18
			2.2.2.1	Microstrip (offset microstrip) line feed	18
			2.2.2.2	Coaxial feed	19
			2.2.2.3	Aperture coupled feed	20
			2.2.2.4	Proximity coupled feed	21
		2.2.3	Сот	mparison of different feeding techniques	22
	2.3		Μ	etamaterial	23
		2.3.1		Definition of Metamaterials	23
		2.3.2		Classification of Metamaterials	23
			2.3.2.1	Types	24
		2.3.3	Backgro	und on construction	24
		2.3.4	Ľ	Jesign approaches of Metamaterials	25
		2.3.5		Metamaterial applications	25
			2.3.5.1	WMD detectors	25
			2.3.5.2	Invisible subs	25
			2.3.5.3	Revolutionary electronics	26
			2.3.5.4	Light and sound filtering	26
			2.3.5.5	Biosensor	26
			2.3.5.6	Metamaterials absorber	26
		2.3.6	Metamat	terial advantages	27
			2.3.6.1	Directivity enhancement	27
			2.3.6.2	Bandwidth enhancement	27
			2.3.6.3	Radiated power enhancement	27
2	D		2.3.6.4	Beamwidth and side lobes	27
3	Des	ign and	1 impiem	entation Patch antenna with Different Fractal Shape 28	20
	3.1 2.2			uroducuon	20
	3.4 2.2	Fract	MIN Shapor		29
	5.5 2 ∕	Anton	ai Shapes		30 20
	J.4				20
		3.4.1 2 / 7	Design.		30 22
	3 5	3.4.4	Results.		20 20
	5.5		2	ummary	20

Table of Contents

4 Design and Fabrication of Ultra-Wideband Leaky Wave Metamaterial	
Antennas	39
4.1 Introduction	39
4.2 Array of 2X2 elements	40
4.2.1 Design	40
4.2.2 Results	42
4.3 Array of 9X11 elements	45
4.3.1 Design	45
4.3.2 Results	47
4.4 Summary	50
5 Design an UWB microstrip Antenna for 4G applications	51
5.1 Introduction	51
5.2 Antenna Structure and Design	52
5.3 Antenna Results	56
5.3.1 S-parameters	57
5.3.2 VSWR	60
5.3.3 Gain	61
5.3.4 Total Efficiency of Antenna	62
5.3.5 Radiation Pattern	62
5.4 Comparison	64
5.5 Summary	65
6 Design, simulation and fabrication of multi band- inverted F antenna	66
6.1 Introduction	66
6.2 Analysis	66
6.3 Design and construction of an inverted F antenna	67
6.4 simulation	68
6.4.1 1st design	68
6.4.2 Microstrip Line feeding	70
6.4.3 Coaxial fed inverted F antenna	72
6.5 Triple band output	74
6.6 Quad band Inverted-F antenna	78

6.7 Scaled quad inverted F antenna	84
6.7.1 Fabrication and measurements	90
7 Conclusion & Future Work	
7.1 Conclusion	
7.2 Future work	
Bibliography	

List of Figures

2.1	AMPS	. 6
2.2	GSM network architecture. [4]	. 8
2.3	MIMO antennas. [8]	.11
2.4	Spectrum range for 5G wireless communication. [10]	.12
2.5	Proposed 5G wireless architecture [10]	.13
2.6	Device to device communication scheme [10].	.15
2.7	Microstrip patch antenna	.17
2.8	Microstrip Line Feed.	.19
2.9	Coaxial feed.	.19
2.10	Aperture coupled feed	20
2.11	Proximity coupled feed.	.21
2.12	Comparison of different feeding techniques [13]	22
2.13	Classification of Metamaterials.	23
3.1	Fractal Shape Proposed	.29
3.2	Pythagorean tree, Sierpinski gasket, and Koch curve	.30
3.3	Conventional patch antenna.	.31
3.4	(a) First iteration Pythagorean (b) Second iteration Pythagorean Pythagorear	1
	first and second iteration applied on the conventional patch	31
3.5	the Sierpinski gasket iterations applied on the Pythagorean iterations	.32
3.6	Conventional patch with Koch on the sides.	.33
3.7	Return loss of the conventional patch	.33
3.8	Return loss of first and second Pythagorean iterations, the red is iteration	
	one and the orange is iteration two	34
3.9	Return loss of first and second Pythagorean iterations, the red is iteration	
	one and the orange is iteration two	34
3.10	Return loss of first, second, third of Sierpinski applied on the second	
	iteration Pythagorean.	.35
3.11	Return loss of conventional patch with Koch on sides	35
3.12	Top and Perspective View of first iteration Pythagorean antenna designed	
	on CST	.36
3.13	S11 for simulated and measured return loss .	.36
3.14	2D radiation pattern of first iteration Pythagorean at resonant frequency	
	of 10 GHz	37
3.15	Top and bottom fabricated antenna.	37
3.16	surface current at frequency 10 GHz.	38
4.1	The structure of the proposed 2x2 array LWA top and bottom view xviii	.42
4.2 4.3	fabricated of the proposed 2x2 array LWA top and bottom view The mushroom ground structure Top and Bottom view	.42 .43
4.4	The fabricated 2x2 array LWA with mushroom ground Top and Bottom	
	view	43

4.5	The return loss of the proposed 2x2 array LWA The return loss of the proposed mushroom grounded LWA.	44
4.7	Maximum gain over frequency for 2x2 array LWA and 2x2 mushroom	
	grounded LWA	45
4.8	Radiation patterns in E-plane of the proposed mushroom grounded LWA	
	from frequencies 6.5 GHz to 16.1 GHz.	46
4.9	The structure of the proposed 9x11 array LWA top and bottom view.	47
4.1	0 The structure of via tuned 9x11 array LWA Top and Bottom view	47
4.1	1 The return loss of the proposed 9x11 array LWA	48
4.1	2 The return loss of the proposed 9x11 with via tuning.	48
4.1.	4 Maximum gain over frequency of 9x11 array LWAs	49
4.14		49
4.1	5 Radiation patterns of via tuned 9x11 array LWA for frequencies of 6 GHz	50
4.1	10 11.7 GHz. $11.7 GHz$.	50
4.1	7 The return loss of the 9x11 absorber array LWA	51
		51
5.1	The front view for the first antenna.	54
5.2	Ground of the first antenna	54
5.3	The Total dimensions of the second antenna.	55
5.4	The front view of the microstrip antenna	55
5.5	dimensions of the decoupling	56
5.6	The front view of the antenna.	57
5.7	The back view of the antenna.	58
5.8	s11 simulated and measured bandwidth of the second element.	58
5.9	s22 simulated and measured bandwidth of the second element.	59
5.1	U Simulated and measured coupling effect (\$1,2)	59
5.1	1 Simulated and measured coupling effect (52,1)	60
5.1.	2 Simulated overall S-parameter	60
5.1.	3 measured overall S-parameter	61
5.14	F Cain from port1	62
5.1	6 Gain from simulated and measured at nort 2	63
5.1	7 Total efficiency simulated and measured at port1	64
5.1	8 Total efficiency simulated and measured at port?	64
5.1	9 E-Plane radiation patterns from port1	65
5.2	0 H-Plane radiation patterns from port1	65
5.2	1 E-Plane radiation patterns at port2	66
5.2	2 H-Plane radiation patterns at port2	66
6.1	Inverted F with loaded feed lines at 60 GHz top view	71
67	Rottom view coavial feed inverted F	71
63	S_{11} return loss of original inverted F antenna	···/1 72
64	Height of layers of original inverted F antenna	,2
0.1	freight of hyperb of original inverteur antenna	