بسم الله الرحمن الرحيم
جامعة عين شمس
tوثيق الإلكتروني والميكروفيلم
قسم
نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها
على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن
تحفظ هذه الأقراص المدمجة بعيدا عن الغبار
بعض الوثائق الأصلية تالفة
بالرسالةصفحات
لم ترد بالأصل
STUDIES ON SOME BIOLOGICAL RESPONSES
OF MALE AND FEMALE LOCAL CHICKS TO
THE ANTIÖSTROGENIC DRUG TAMOXIFEN

By

MAYSA MOUSTAFA HANAFY

B.SC. Agric. (Poultry Production) Alexandria Univ. 1992
M.SC. Agric. (Poultry Production) Alexandria Univ. 1995

Thesis

Submitted in Partial fulfillment of the
Requirements for the Degree

OF

DOCTOR OF PHILOSOPHY

IN

AGRICULTURAL SCIENCES
(Poultry Production)

Department of Poultry Production
Kafr El-Sheikh, Faculty of Agriculture
Tanta University
2001

B E L Y A
APPROVAL SHEET

TITLE OF THESIS: STUDIES ON SOME BIOLOGICAL RESPONSES OF MALE AND FEMALE LOCAL CHICKS TO THE ANTIÖSTROGENIC DRUG TAMOXIFEN

NAME OF CANDIDATE: MAYSA MOUSTAFA HANAFY

DEGREE: Ph.D. in Agric. Sci. (Poultry Production)

Thesis Approved By:

Prof. Dr. A.A. Darwish
Professor of Poultry Physiology, Department of Poultry Production, Fayoum, Faculty Of Agriculture, Cairo University

Prof. Dr. K.M. Saleh
Professor of Poultry Breeding, Department of Poultry Production, Kafr El-Sheikh, Faculty Of Agriculture, Tanta University

Prof. Dr. M.M. El-Habbak
Professor of Poultry Physiology and Head of Department of Poultry Production, Kafr El-Sheikh, Faculty Of Agriculture, Tanta University

Prof. Dr. Neamat A. Badawy
Professor of Poultry Nutrition, Department of Poultry Production, Kafr El-Sheikh, Faculty Of Agriculture, Tanta University
SUPERVISION COMMITTEE

Prof. Dr. Mohamed M. El-Habbak
Professor of Poultry Physiology,
Kafr El-Sheikh, Faculty of Agriculture,
Tanta University

Prof. Dr. Neamat A. Badawy
Professor of Poultry Nutrition,
Kafr El-Sheikh, Faculty of Agriculture,
Tanta University

Prof. Dr. Hanna M. Khalil
Professor of Poultry Physiology,
Animal Production Research Institute,
Agriculture Research Center,
Ministry of Agriculture
Acknowledgement

First of all prayerful thanks to our merciful god who give me every thing I have.

My sincere gratitude and deep appreciation to Prof. Dr. M.M. El-Habbak, Head of Poultry Production Department and Professor of Poultry Physiology, Kafr El-Sheikh, Faculty of Agriculture, Tanta University, for his direct supervision, suggesting the subject, continuous help and his advice during the work, preparation of manuscript and completion of this thesis.

Many thanks to Prof. Dr. Neamat A. Badawy, Professor of Poultry Nutrition, Kafr El-Sheikh, Faculty of Agriculture, Tanta University, for her kind
supervision of this study and continual helps throughout the work of the thesis.

Many deeply grateful acknowledgement are extended to Prof. Dr. Hanna M. Khalil, Professor of Poultry Physiology, Animal Production Research Institute, Agri. Res. Center, Ministry of Agriculture, for her kind supervision, advice for helping me in chemical analysis of this investigation and her valuable guidance.

Many thanks to Prof. Dr. A.I. ABD El-Ghani, Professor of Poultry Production, Animal Production Research Institute, Agri. Res. Center, Ministry of Agriculture, for providing facilities for this work.

Finally cardinal thanks are due to my family for their continuous encouragement and kind support.
Contents

- Acknowledgement
- List of tables

1. INTRODUCTION

2. REVIEW OF LITERATURE

- 2.1. The antioestrogenic drug tamoxifen and its mode of action:
 - 2.1.1. Chemistry
 - 2.1.2. Biochemistry
 - 2.1.3. Toxicology
- 2.2. Factors determining the response of animals to tamoxifen treatment:
 - 2.2.1. Species of treated animal.
 - Rats
 - Mice
 - Hamsters
 - Rabbits
 - Guinea Pigs
 - Poultry
 - 2.2.2. Age of treated animal
 - 2.2.3. Doses of drug applied
 - 2.2.4. Route of administration
- 2.3. Response of birds to tamoxifen

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. REVIEW OF LITERATURE</td>
<td>5</td>
</tr>
<tr>
<td>2.1. The antioestrogenic drug tamoxifen ...</td>
<td></td>
</tr>
<tr>
<td>2.1.1. Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2. Biochemistry</td>
<td>6</td>
</tr>
<tr>
<td>2.1.3. Toxicology</td>
<td>8</td>
</tr>
<tr>
<td>2.2. Factors determining the response of ...</td>
<td>11</td>
</tr>
<tr>
<td>2.2.1. Species of treated animal.</td>
<td></td>
</tr>
<tr>
<td>Rats</td>
<td>11</td>
</tr>
<tr>
<td>Mice</td>
<td>13</td>
</tr>
<tr>
<td>Hamsters</td>
<td>14</td>
</tr>
<tr>
<td>Rabbits</td>
<td>15</td>
</tr>
<tr>
<td>Guinea Pigs</td>
<td>15</td>
</tr>
<tr>
<td>Poultry</td>
<td>16</td>
</tr>
<tr>
<td>2.2.2. Age of treated animal</td>
<td>16</td>
</tr>
<tr>
<td>2.2.3. Doses of drug applied</td>
<td>18</td>
</tr>
<tr>
<td>2.2.4. Route of administration</td>
<td>20</td>
</tr>
<tr>
<td>2.3. Response of birds to tamoxifen</td>
<td>21</td>
</tr>
</tbody>
</table>
Contents (continue-)

2.3.1 Males 21

2.3.2 Females 23

2.4 Physiological aspects related to estrogens and androgens in poultry

2.4.1 Estrogens 26

A. Fat deposition and fat storage in tissues 26

B. Calcium and medullary bone 26

C. Pituitary gonadotropins 27

2.4.2 Androgens 27

A. Reproductive behavior across avian species 28

B. Effect of testosterone on the growth 29

C. Androgens and comb growth 29

D. Androgen and immune system 30

E. Anabolic and androgenic effects 31

F. Androgen and estrogen synergism 32

2.5 Effects of antioestrogenic and antiandrogenic compound

on poultry 33

2.5.1 Antioestrogenic compound 33

2.5.2 Antiandrogenic compound 35

3. MATERIALS AND METHODS 36

3.1 Experimental drug 36

3.2 Experimental birds and design 36

3.3 General management 37

3.4 Data collected 40
Contents (continue--)

3.4.1. Live body weight and fed consumption	40
3.4.2. Comb factor	40
3.4.3. Slaughter traits	40
3.4.3.1. Blood packed cell volume and plasma biochemical estimates	41
3.4.3.2. Tibia analysis	42
3.4.4. Seinen quality	42
3.4.5. Egg production	43
3.4.5.1. Hen-Day egg production	43
3.4.5.2. Egg mass	43
3.4.6. Egg quality	43
3.4.6.1. Egg shape index	43
3.4.6.2. Egg components	43
3.4.6.3. Haugh units	44
3.4.6.4. Yolk index	44
3.4.6.5. Shell thickness	44
3.4.6.6. Egg yolk analysis	44
3.4.7. Hatching traits	45
3.4.7.1. Fertility percentage	45
3.4.7.2. Hatchability percentage	45
3.5. Statistical analysis	47

4. RESULTS AND DISCUSSION

4.1. Body weight	50
4.2. Body weight gain	57
4.3. Feed consumption	67
Contents (continue---)

4.4. Feed conversion .. 67
4.5. Mortality rate .. 72
4.6. Comb factor .. 72
4.7. Relative weight of some internal organs 81
4.8. Development of sex organs 92
 4.8.1. Males .. 92
 4.8.1.1. Testes relative weight 92
 4.8.1.2. Semen quality 95
 4.8.2. Females 100
 4.8.2.1. Ovarian relative weight 100
 4.8.2.2. Oviduct weight and length 101
 4.8.2.3. Female age at sexual maturity 104
 Blood hormones 122
4.10. Tibia analysis 137
4.11. Hatching traits 140
4.12. Egg quality traits 143
4.13. Egg yolk chemical analysis 150
4.14. Egg production through the first three months of
 production .. 153

5. SUMMARY AND CONCLUSIONS 156

6. REFERENCES ... 166

7. APPENDIX .. 189

8. ARABIC SUMMARY
<table>
<thead>
<tr>
<th>Table no.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Composition of the diets used in the experiment.</td>
<td>39</td>
</tr>
<tr>
<td>2</td>
<td>The number of eggs incubated/treatment in the four groups.</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>Average body weight (g, $\bar{X}\pm S.E$) of Gimmizah chicks treated with TAM for six weeks since the age of one week (group A).</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>Average body weight (g, $\bar{X}\pm S.E$) of Gimmizah chicks treated with TAM for six weeks since the age of 5 weeks (group B).</td>
<td>54</td>
</tr>
<tr>
<td>5</td>
<td>Average body weight (g, $\bar{X}\pm S.E$) of Gimmizah chicks treated with TAM for six weeks since the age of 9 weeks (group C).</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>Average body weight (g, $\bar{X}\pm S.E$) of Gimmizah chicks treated with TAM for six weeks since the age of 13 weeks (group D).</td>
<td>56</td>
</tr>
<tr>
<td>7</td>
<td>Average body weight gain (g, $\bar{X}\pm S.E$) of Gimmizah chicks treated with TAM for six weeks since the age of one week (group A).</td>
<td>63</td>
</tr>
<tr>
<td>8</td>
<td>Average body weight gain (g, $\bar{X}\pm S.E$) of Gimmizah chicks treated with TAM for six weeks since the age of 5 weeks (group B).</td>
<td>64</td>
</tr>
</tbody>
</table>