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Abstract— Computer Aided Detection (CAD) systems provide 

a second opinion to radiologists in detecting lung cancer by 

providing automated analysis of the scans. The proposed CAD 

system consists of five processing steps: image acquisition, pre-

processing, lung segmentation, nodule detection and false positive 

reduction. First,  400 CT scans are downloaded from the Lung 

Image Database Consortium (LIDC). Preprocessing is 

implemented using contrast stretching and enhancing. Lung 

segmentation and nodule detection stages are performed using a 

combination of region growing, thresholding and morphological 

operations. Each 3D structure is then subjected to tabular 

structure elimination to provide nodule candidates. In the false 

positive reduction stage, some of the basic nodule features are 

extracted from the training data to set thresholds for a simple 

rule-based classifier. The CAD achieved sensitivity of 77.77%, 

specificity of 69.5% and accuracy  70.53 % with an average 4.1 

FPs/scan. 

Keywords—Lung Cancer, Computer Aided Detection, 

Computed Tomography, Segmentation, Rule-Based Classifier  

I. INTRODUCTION  

One of the primary causes of death in the world is Lung 
cancer [1]. Pulmonary nodules are caused by the 
uncontrollable irregular growth of cells in the lung 
parenchyma. Detecting these nodules in the lung tissue in an 
early phase increases the chances of survival for the patient 
and improves efficiency of the treatment [2]. Lung nodules are 
spherical abnormalities with a diameter of up to approximately 
30mm [3]. One of the most accurate screening methods for 
detecting lung  nodules is computed tomography (CT) scans. 
The whole chest can be scanned in a few seconds using multi-
detector row CT scanners. These scanners provide high 
quality scans with isotropic voxels. CT scans can show the 
density difference between normal and diseased tissue. Also, 
CT makes it possible to detect the small or ground-glass 

nodules that can be hardly seen in the other medical imaging 
techniques, like chest radiography [4]. However, making an 
accurate diagnosis based on analyzing the CT scans alone can 
be a very challenging and time-consuming task, as a CT scan 
could contain between 150-500 slices that must be checked by 
a radiologist [5]. As a result, many CAD methods are 
developed for automated lung nodule detection to provide a 
second opinion to the radiologists and help them make a more 
accurate diagnosis in a short amount of time. Also, human 
experts may miss subtle important details that could be located 
by automated CAD systems [6].  

Detection of lung nodules can be a very difficult task as it 
is hard to differentiate between the lung internal structure and 
the nodules, especially if the nodule is attached to the lung 
wall or to the end of a vessel. Also, the size of nodules can 
vary significantly. This paper proposes a technique to face 
these challenges and recognize the differences between 
spherical nodules and internal tabular structure of the lung. It 
can also handle the cases in which the nodule is attached to the 
chest wall or connected to the blood tree. The work is totally 
automated without required external interference, and 
produces consistent results with the same output for the same 
input.  

The paper is organized as follows: section 2 presents 
related work to the topic of lung cancer detection in CT scan 
in 2D or 3D spaces. Section 3 describes the details of the 
proposed scheme. Section 4 presents results and discussion. 

II. RELATED WORK 

This section provides an overview of some of the state-of-
art techniques used for detecting lung nodules in computed 
tomography. There exist a number of review papers on lung 
nodule segmentation and detection [7]–[15]. 



 Messay, et al. [16] used thresholding  followed by 2D 
morphological analysis and a rule-based analysis to identify the 
lungs and detect the nodules. Then a Support Vector Machine 
(SVM) based on Radial Basis Function (RBF) is used to reduce 
the number of false positives. Tan, et al. [17] applied multi-
thresholding to segment the lungs then calculated the maxima 
of the normalized gradient in 3D to generate seed points for 
nodule clusters. Fantacci, et al. [18] utilized a wavefront 
algorithm and morphological closing to define the inner 
surface of the lungs. Then a Blob-detection algorithm based on 
multi-scale and Gaussian filtering is used to detect nodule 
candidates. Ye, et al. [19] proposed a 3D adaptive fuzzy 
thresholding method that obtained the initial lung mask. Then 
antigeometric diffusion model followed by volumetric shape 
index is used to differentiate spherical objects from oblong 
vessels. Finally, a  MEM-Based segmentation was carried out 
to iteratively estimate the model parameters and calculate each 
voxel probability. Kuppusamy, et al. [20] used Ant Colony 
Optimization (ACO) to detect the edges and then the output 
was fed to a black circular neighborhood algorithm. The output 
of this phase was the center of the detected nodules. De 
Carvalho, et al. [21] used Genetic Algorithm (GA) to select the 
best model and features, followed by a SVM for classification. 
Abduh, et al.  [22] defined small windows for each ROI to 
calculate features, then a stepwise feature selection (SFS) 
algorithm was utilized to filter the best features which were 
used as an input to K-Nearest Neighbor (KNN) and SVM 
classifiers. . In the study by Dou, et al. [23] a simple strategy to 
encode multi-level contextual information with Convolutional 
Neural Networks (CNNs) was proposed, which could handle 
lung nodules of different sizes and shapes effectively. Three 
deep learning models were constructed by Sun, et al. [24] : 
CNN, Deep Belief Networks (DBNs) and Stacked Denoising 

Autoencoder (SDAE). The three models were tested and 
compared to the traditional CAD systems, and DBNs achieved 
the highest accuracy. Duggan, et al. [25] utilized Active 
Contour Model to extract the lung structure with similar 
intensity values into one big volume. Then Connected 
Component Labeling was used to separate them followed by a 
Rule-based classifier to reduce the numbers of false positives. 

III.  METHODOLGY 

This section presents the proposed method for lung 
segmentation and nodule detection in detail through the 
following subsections as explained in Fig. 1.  

A. Image Acquisition 

Image acquisition is the process of acquiring medical 
images from imaging modalities. There are several lung 
screening techniques, among which the CT has more 
advantages, as it allows screening the whole lung area with 
higher contrast and better details. The Lung Image Database 
Consortium (LIDC) provided by the National Cancer Institute 
(NCI) is one of the largest public databases available [26]–
[28]. LIDC is the fully annotated by four different radiologists. 
The observations are done on two consecutive phases: first the 
blinded phase, then the un-blinded one where each observer 
could see the results of the other three observers. This database 
shows the location of the nodules along with their 
characteristics such as subtlety, solidity, spiculation, lobulation, 
sphericity in XML files within each scan. The dataset is an 
international web-available resource, hosted by the National 
Biomedical Imaging Archive (NBIA, 
https://imaging.nci.nih.gov/ ncia/login.jsf).  

Fig. 1 Simple chart of the proposed methodology 



Total of 400 cases are downloaded for this work. Nodules 
less than 3mm are excluded as there is no enough information 
about their degree of malignancy. The scans are divided into 
250 training data and 150 testing data. The LIDC MATLAB 
toolbox provided by Lampert et al. [29] is used to generate the 
ground truth data given the XML annotations of the LIDC data 
as an input. The output of the toolbox includes a separate 
folder for each slice containing individual masks provided by 
the four radiologists. The masks are combined together to 
make Probability Maps (PMaps) where the pixels are summed 
and normalized to show the Probability of contribution of this 
pixel to the ground truth nodule according to the radiologists 
opinions. If the Probability is greater than 0.75 the pixel is 
counted as a part of the nodule mask. After creating the PMaps, 
nodules are separated and saved into different matrices for 
further processing.  

B. Preprocessing 

Pre-processing helps to provide better visual information 
for the human eyes, or to get enhanced input for the automated 
image processing systems. This step reduces noise and 
artifacts in the lung CT scans. Without preprocessing, it may 
be difficult to segment the lung parenchyma accurately, locate  
low-contrast nodules with ground-glass opacity or nodules 
attached to the blood tree or lung walls [30]. 

In this stage the scans are sorted then the first and last 8 
slices are excluded as they are not showing the internal parts 
of the lungs. The contrast of the remaining slices is enhanced 
by first finding the lower and upper intensity limits that can be 
used for contrast stretching using MATLAB functions. Then 
the values of the input images are mapped to new values in the 
enhanced images,  between the pre-specified lower and upper 

limits. Finally, the images are normalized between 0 and 256. 
An example of the preprocessing output is shown in Fig. 2b. 

C. Lung Segmentation 

Lung segmentation is one of the important steps in a CAD 
system. Segmenting the lung areas reduces the running time 
and minimizes the search space for locating lung nodules. 
Lung segmentation is necessary as a preprocessing step for the 
nodule detection to obtain a higher detection rate, and due to 
similarities between the intensity values of lung wall and 
nodules. Some obstacles may occur during lung segmentation, 
such as the nodules connected to the lung wall, which are not 
considered as a part of the lung parenchyma during the 
segmentation process. Accuracy, running time, and 
automation level are used to measure the efficiency a certain 
technique. In the proposed method, this stage is composed of 
three main steps: thorax extraction, lung extraction and lung 
reconstruction. 

1) Thorax extraction 

This step removes all the external artifacts and air 
surrounding the patient's body as shown in the original input 
CT image in Fig. 2a. The algorithm used here is region 
growing with a technique similar to [31], but instead of using 
a 2D region growing, a 3D version of it saves much 
computation time. Also, instead of using four different seed 
points for each slice, only one seed point is required for the 
whole scan with coordinates [1,1,1]. The most important part 
of this step is finding the proper threshold that preserves the 
lung structure. The greater part of the external area of the 
thorax is formed of low intensity values. The histogram of the 
first slice only is analyzed, as in Fig. 3, we can see that there 

Fig. 2. Proposed CAD sequence (a) Original slice (b) Result of the preprocessing step with higher contrast (c)  Thorax 
extraction results with the external areas removed (d) Lung extraction output after the removal of the thoracic wall with 

holes and obvious errors (e) Reconstructed lungs using morphological processing (f) Internal structure as appears in a 2D 

slice after thresholding (g) Result of 3D Region Growing (h) Result of tabular structure elimination with most of the 
vessels removed. The actual nodule is pointed at with an orange arrow in the bottom right corner of the image 



are two well-defined peaks where the first peak points to the 
voxels with low intensity that forms the parenchyma and the 
external region of interest and the second peak points to the 
lung wall and internal structures. The threshold is calculated 
as the mid value between the two peaks or the average 
between them, as explained in Fig. 3. In this step region 
growing is better than thresholding as it doesn't affect the 
internal lung parenchyma taking in consideration that it has 
similar intensity to the thorax external region. The result of 
this step can be seen in Fig. 2c. 

2) Lung extraction 

The objective of this step is to separate  the lung 
parenchyma from the surrounding thoracic wall. 3D region 
growing is also used in this step, but this time to identify high 
intensity voxels surrounding the lung area. The threshold is 
calculated in the same way explained in Fig. 3, but the seed 
point this time is considered as the first non-zero voxel lying 
on the diagonal line of the first slice in the scan.  

Results of lung extraction can be seen in Fig.2d. The 
output is full of holes because region growing is applied in the 
3D space not for each 2D slice. Notice that the nodule 
connected to the lung wall is excluded from the parenchyma. 
These errors are corrected in the next step of the lung 
segmentation. 

3) Lung Reconstruction 

 
Some times during the 3D extraction of the lungs, small 

areas are mistakenly excluded from the pulmonary 
parenchyma due to intensity similarity with the thoracic wall. 
These areas can possibly contain nodule candidates connected 
to the lung walls. So, this stage is very important to 
reconstruct the edges and preserve peripheral nodule 
candidates. 

 To restore the original lung outline, an algorithm similar 
to the rolling-ball algorithm [31] with some modifications is 
used. First morphological closing is applied using a circular 
structure element, with an average radius of 14 pixels, that 

optimally restores the missing areas without distorting the 
shape of the lungs or joining both parts of the lungs together. 
The optimum radius is found through experiments on the 
provided database. Then a 3D hole filling algorithm is done 
using a flood-fill operation. Morphological opening is applied 
to the lung mask again with the same structuring element as 
the closing to restore the original lung size, and then a logical 
OR is applied with the lung mask from the previous 'lung 
extraction' step to restore the sharp edges of the lungs lost 
through morphological operations. See the results of lung 
reconstruction is Fig. 2e. 

D. Nodule Detection 

After narrowing the search space for the nodules in the 
segmented lungs, next stage in lung cancer CAD systems is 
the nodule detection. This stage has a high detection 
sensitivity that locates all the suspicious areas including both 
the true nodules and a high number of false positives, which 
can be reduced in the next stages of the CAD system.  In a 3D 
CT scan, a lung nodule is a spherical blob-like object that has 
a lighter grey-level than the background. Nodules may be 
separated from other structures, connected to a vessel or 
connected to the lung wall [32]. 

Nodule detection is done through two main steps: the first 
step identifies the internal structure of the lungs that includes 
both vessels and actual nodules; the second one eliminates the 
tabular structures to provide nodule candidates. 

1) Structure extraction 

In this step we work in both 2D and 3D spaces. First, 

thresholding is applied to each 2D slice to identify the internal 

high intensity structure and separate it from the lung 

parenchyma. Calculating the proper threshold isn't as easy as 

obtaining it in the lung extraction step. There is only one 

obvious peak in the histogram as there are less number of high 

intensity areas compared to the other areas. Threshold is 

obtained as the inflection point of the histogram curve as 

explained by da silva, et al. [31]. The output of using this 

threshold contains unwanted edges along the lung walls as in 

Fig. 4. To remove these artifacts, we first apply canny edge 

detector to the reconstructed lung mask from the previous 

steps . Then the edges are dilated with a structuring element of 

one pixel radius and subtracted from the structure mask. See 

the results in Fig. 2f. 

The next step is to separate each individual 3D structure, 

to identify nodule candidates. Region growing is applied with 

seed points chosen from voxels of the structures which has not 

been reached yet. Due to the large memory overhead, 

structures are stored in the form of X,Y and Z arrays instead 

of 3d matrices.  The result of 3D structure extraction is shown 

in Fig. 2g. 

2) Tabular Structure Elimination 

Sometimes, nodules are attached to the bronchial and 
vascular trees. This case causes a problem for nodule detection 
and forces us to identify and eliminate these trees first before 

Fig. 3 Example of a CT slice histogram, with threshold value calculated as the 

average of intensity values of Peak 1 and Peak2 



the next stages of the algorithm. Pulmonary vessels have a 
tabular shape with a very small depth compared to the nodules 
attached to it,  which have a compact round or semi-round 
shape with  larger depth values.  

To eliminate tabular vessels, a complete distance transform 
of the 3D internal structure mask is computed using Euclidean 
distance, to create a depth map. The Euclidean distance is the 
straight-line distance between two pixels. For each voxel, the 
distance transform assigns a number that is the distance 
between that voxel and the closest nonzero voxel. Nodules -as 
well as thick lung structures- have  distance values up to 6, 
while vessels and other tabular structures have less distance 
values. A threshold is set to create the final nodule candidates 
mask, where all voxels with a distance value greater than 2 is 
possibly a part of a nodule candidate. 

We can see the nodule in the bottom right corner of the 
depth map presented in Fig.5, along with some other thick 
pulmonary structures. The result of this stage after applying 
the threshold can be seen in Fig 2h. Distance transform is 
applied to all the 3D structures providing us with a list of 
nodule candidates including a lot of false positives that have to 
be reduced in the next stages of the algorithm. 

E. False Positive Reduction 

While the nodule detection step initially identify 
suspicious nodule candidates, the false-positive reduction step 
aims to classify the candidates into true nodule and false-
positive categories. False positive reduction step aims to 
achieve maximum sensitivity or true positive rate. Two 
classifiers are used for this step: A simple Rule-based 
classifier and Convolutional Neural Networks. But in this 
paper  we only use the Rule-based classifier, keeping CNNs 
for future work. 

The Rule-based classifier works as an initial phase that 
eliminates the candidates which have more probability Not  to 
be a nodule. it functions through a set of if-then rules with 
thresholds whose values are chosen carefully through 
extensive training of the available data set. The rules are 
applied to a selected set of features that are proven to be more 

efficient for quickly eliminating the obvious non-nodule 
candidates. The selected features are: major axis length, minor 
axis length, area (of the largest slice), volume and spherical 
disproportion. Nodule volume V is calculated as follows 
where N is the number of voxels, X is the X-pixel spacing, Y 
is the Y-pixel spacing and T is the slice thickness: 

V = N * X * Y * T                              (1) 

Spherical disproportion S is the ratio between the 
dimensions of the bounding box of the object and those of the 
bounding box of the equivalent sphere. S is calculated as 
follows where VB is the volume of the bounding box of the 
object whose dimensions are obtained by the MATLAB 
regionprops function: 

               S = 
  

     
                                                    (2) 

where 

               R =  
  

  

 
                                                     (3) 

 First, comes the training phase where these features are 
extracted from the LIDC ground truth nodules. Min and max 
thresholds of each rule are set as the min and max values of 
each feature vector. Then the same set of features are 
extracted from each candidate during the testing phase making 
a vector that characterizes them, and fed to the Rule-based 
classifier. Results of the used classifier are shown in Fig.6. 
This classifier is an initial step for intensive classification 
using CNNs or Support Vector Machines (SVM). 

 

IV. RESULTS AND DISCUSSION 

 In this section, we present the results obtained with the 
proposed algorithm for the detection of pulmonary nodules. 
The images used here are obtained from the LIDC dataset with 

Fig. 4 Edges artifacts of the structure extraction step 
after thresholding 

Fig. 5 Depth map calculated with Euclidean distance 
transform in the tabular structure elimination step 



a total of 250 training data and 150 testing data. Number of 
nodules in the testing data are 262 nodules. Thresholds 
obtained through the training dataset are detailed in Table1. 

TABLE 1 Thresholds of the Rule-based classifier 

Feature Min Threshold Max Threshold 

Major axis length 1.2 52.1005   

Minor axis length 1.154 40.8242 

Area 11  1645 

Volume 1.948  22708.297 

Spherical 

Disproportion 

0.5236 15.1616 

 

In order to evaluate the efficiency of the algorithm, 
sensitivity, specificity and accuracy are considered. Sensitivity 
is defined as the true positive rate: TP / ( TP + FN ), 
specificity is the true negative rate: TN / ( TN + FP ) and the 
accuracy of the CAD system is the rate of both: (TP + TN) / 
(TP + TN + FP + FN), where TP is the number of actual 
nodules found correctly, TN is the number of non-nodules 
correctly excluded, FP is the number of non-nodule structures 
considered as nodules and FN is the number of missed 
nodules. 

The total sensitivity of the algorithm measured on the 
testing data is 77.77%, specificity is 69.5% and accuracy is 
70.53 % with an average of 4.1 FPs/scan. The results are 
satisfactory taking in consideration that the simple Rule-based  
classifier used was only an initial first step of the classification 
and FP reduction. The time required to run the algorithm 
varies from a case to another, depending on the number of 
slices of each scan. Average running time is estimated as 
127.96 seconds on an Intel core i7 CPU with 8 GB RAM.  

Comparatively, the authors in [31] achieved a total 
sensitivity of 84.84 % and 96.15%  specificity using Support 

Vector Machine classifier on a 33 input scans. In [16] the 
algorithm achieved a total sensitivity of 82.66% with 3 
FPs/scan using two classifiers and a dataset of 84 scans. 
Sivakumar, et al. [33] achieved a total accuracy of 80.36%, 
specificity of 76.47% and sensitivity of 82.05% using a 
dataset of 54 scans. The authors in [34] used a Rule-based 
classifier on 90 scans achieving a total detection rate of 85% 
with 2 FPs/scan. 

  

V. CONCLUSION 

Designing an efficient and complete lung CAD system is 
very important as early detection of lung nodules can improve 
the effectiveness of treatment and increase the patient’s 
chances of survival. This paper proposes a fully automated 
algorithm that is based on simple and quick steps, which 
produce consistent output for the same inputs. Most of the 
steps are done in the 3D space to preserve the 3D 
characteristics of the detected nodules. For thorax and lung 
segmentation, 3D Region Growing is used to segment regions 
of interest. The missing parts of the lungs are reconstructed 
using morphological operations and  3D hole filling 
algorithms. Internal lung structures are extracted using 2D 
thresholding and 3D Region Growing. Nodule candidates are 
detected by excluding tabular structures, which is done by 
building a complete depth map using Euclidean distance 
transform. Finally, a simple Rule-based Classifier is designed 
to preserve the most qualified nodule candidates. The features 
used in the classifier are chosen carefully among tens of 
available features for lung nodules through extensive 
experiments. This classifier works only as an initial 
classification step that achieved a total sensitivity of 77.77%, 
specificity of 69.5% and a total accuracy of 70.53%. The 
algorithm can easily detect well-circumscribed nodules as well 
as nodules attached  to the lung wall or to lung vessels. Some 
ground glass nodules cannot be detected using our CAD 
system due to their high transparency.  

In future work we will focus on building an efficient 
classifier using SVM or CNNs to reduce the numbers of FPs 
and increase the overall accuracy of the algorithm. Also, we 
will try to test the algorithm on more datasets along with the 
rest of the LIDC database.  
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