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Abstract - With the recent remarkable and fast evolution in 
telecommunication and computing technologies, great amounts
of individuals’ tabular-formatted data are collected and used 
by several organizations in the society. In some cases, some 
organizations need to share these gathered data to be used in 
business analysis, decision making or scientific researches 
purposes, which can involve sensitive information about the 
individuals. However, these data cannot be published in their 
original form to other third parties due to the associated 
privacy concerns. Consequently, preserving individuals’ 
privacy represents a critical issue when sharing the 
individuals’ private data. Hence, Privacy-Preserving Tabular 
Data Publishing (PPTDP) has received a great attention to 
protect the privacy of individuals’ tabular data, where several
approaches have been presented to address this issue. In this 
paper, we propose an enhanced additive noise approach for 
privacy-preserving microdata with Single Sensitive Attribute 
(SSA) publishing. The proposed approach maintains better 
published data utility to allow more accurate mining and 
analytical results, where more robust privacy protection 
against privacy attacks is provided.

Keywords – data privacy; privacy-preserving data 
publishing; data anonymization; tabular data; single sensitive 
attribute; privacy attacks.

I. INTRODUCTION 

Many data holders have recognized the importance of 
their collected individuals’ data for making business 
decisions, knowledge discovery, or other research needs [1]. 
These data holders include hospitals, government agencies, 
insurance companies… etc. However, these data often
contain private and sensitive information about the 
individuals that must be well protected from being 
discovered through experiencing privacy disclosure attacks
on the published data [2]. Hence, these data should be 
published in such a way that prohibits the disclosing of the 
individuals’ identity by any intruders who want to breach 
the individual's privacy [3]. Thereby, data holders should
publish data to the public without violating the 
confidentiality of personal information. This has raised 
major concerns about protecting the privacy of individuals 
while publishing data [2-5]. Therefore, Privacy-Preserving 
Tabular Data Publishing (PPTDP) has become an important 
research field in the recent years within the research 
community.

PPTDP studies how to transform the tabular data from its 
original version into a privacy-preserved form in order to be 
published to other parties. The main consideration of PPTDP 
approaches is to publish data with a strong privacy 
protection, such that the individuals’ sensitive information 
could not be inferred with high confidence, while providing 
high utilization capabilities for useful mining and analysis 
tasks [2-3]. Such kind of transformation process is called the 
Anonymization process [4]. In general, PPTDP consists of 
three phases; the first is the data preparation phase, in which 
the data are collected and prepared by the data holder. The 
second is the data processing phase, in which these prepared 
data are processed and anonymized using a certain 
anonymization model. The third is the data publishing phase, 
in which the anonymized data table is published to the data 
recipients to be utilized in the desired analysis or research 
purposes.

Data anonymity model categorizes the data attributes into 
three types: (1) Explicit Identifier attributes (EI), which are
the attributes that can typically identify an individual, i.e.
name or social security number. (2) Quasi Identifier 
attributes (QIDs) that are not considered private individual 
data and can be recognized as background knowledge by
other people or can exist in other external available
databases, i.e. age and zip code. QIDs can potentially 
identify the individual if taken from the published data and 
linked together with such available data. (3) Sensitive 
Attributes (SAs) that are the private and unknown sensitive 
individual attributes, such as the disease and salary, which
need to be prevented from being inferred and preserved
against the different privacy disclosure attacks. Data 
anonymization rules do not publish EI, whereas QIDs may 
be masked using a certain disclosure control method, like 
generalization and/or suppression [6-7] or released without 
any treatment, which is known as bucketization method [8].
In the generalization, the QIDs values of the table’s records 
are replaced by more general values according to a specific
Domain Generalization Hierarchy (DGH) using either 
global or local recoding algorithms [6, 9]. In the published 
table, tuples having the identical generalized QIDs values
are gathered together in a group called QI group or 
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Equivalence Class (EC). In the bucketization, QIDs values 
are grouped properly into buckets according to the privacy 
principle imposed on the SA values. Thereby, the 
generalization approaches protect the tuples in the same EC 
from being disclosed using their QIDs values, while the 
bucketization approaches give more attention to offer better 
data utilization and less information loss. 

In this paper, we propose the Enhanced Additive Noise 
(EAN) approach for PPTDP to anonymize and publish the 
static microdata with Single Sensitive Attribute (SSA). EAN 
enforces a newly-proposed privacy constraint on the SA 
value of the input tuple named “ ݈ -sensitive category 
diversity”, whereas the QIDs original values are published 
to provide better data utility and attributes’ distribution. In 
EAN, the input SA value of each tuple is replaced with a set 
of sensitive values consisting of the real SA value and ݈ −1 random selected noise values, such that each sensitive 
value - either the actual one or the added noise ones - 
belongs to a different sensitive category. This cuts off any 
semantic relationship between the different sensitive values 
in the output sensitive set of the SA in each tuple. Therefore, 
the attacker will be prevented from disclosing the actual 
victim’s SA value with confidence ratio higher than  1 ݈⁄ . 
Besides, the attacker will not be able to infer any 
relationship or discover any additional information about the 
actual sensitive value of any input tuple using the added 
noise values. The rest of the paper is organized as follows. 
Section II reviews the related work. Section III defines the 
problem statement and the main contribution. In Section IV, 
we present the proposed EAN approach. Section V 
discusses the experimental results and the effectiveness of 
the presented method. Finally, section VI concludes the 
paper. 

II. RELATED WORK

Preserving the privacy of publishing static data with SSA 
has been considered by different research works in the 
recent years. The notion of data generalization is firstly 
introduced in [10] to achieve data anonymity when 
disclosing information for data privacy. Then, a privacy 
protection model named ݇-anonymity was proposed by L. 
Sweeney in [11]. It generalized the QIDs values to more 
general values, and then divided the records having the same 
generalized QIDs values into QI-groups, such that each QI-
group contains at least ݇  tuples. The main target of ݇ -
anonymity model is to make the anonymized tuples cannot 
be distinguished by their QIDs values using the 
generalization method. The ݇ -anonymity model protected 
the published table against both the identity disclosure,
which occurs when an individual is correctly identified by a 
certain tuple in the published table [2, 12-13], and the 
membership disclosure attack by which the presence or 
absence of an individual’s tuple in the published table could 
be deduced [2-3, 13]. However, it failed to protect against 
the attribute disclosure, which occurs when new sensitive 

information of individuals are uncovered from the 
anonymized table [2-3, 14], the similarity attack, in which 
the SA values in an EC are similar or semantically related 
(i.e. the SA values belong to the same sensitive category) [2,
14-15], the skewness attack where the SA values in an EC 
are skewed to a specific value, and the sensitivity attacks in 
which the SA values are members of the same sensitivity 
level. This is due to the main drawback of the ݇-anonymity 
model, which is not enforcing any restrictions on the SA 
values in the anonymization process. Moreover, depending 
on generalizing each QID values has made it not suitable for 
high dimensional data, suffers from attributes correlations 
loss, and makes the published data lose significant 
information because of considering the distribution of each 
QID generalized values to be uniform, which is not true in 
the original table [2-3]. Accordingly, these limitations 
decrease the utility of the resultant anonymized data. 

 Sensitive ݇-Anonymity” privacy model was proposed-݌“
in [16] that obeys a restriction on the SA values in each QI-
group to avoid the attribute disclosure attack issue of the ݇-
anonymity. For each QI-group, it restricted the number of 
distinct values for each SA to occur at least ݌ times within 
the same group. However, it could not avoid the attribute 
disclosure in some cases; i.e. ݌ =1 (1-Sensitive 2-
Anonymity), and 2=݌ (2-Sensitive 2-Anonymity). Besides, 
the presented restriction in “ ݌ -Sensitive ݇ -Anonymity”
failed to protect the published SA values against the 
similarity, the skewness and the sensitivity attacks. In [17],
“ ݈ -diversity” generalization-based privacy model was 
presented depending on the principle of increasing the SA 
values’ diversity in every QI-group, such that ݈ number of 
sensitive values will be associated with each published 
tuple. The “݈ -diversity” model increased the difficulty to 
link the individual’s tuple with a sensitive value with a
probability ratio not higher than 1 ݈⁄ , which made it more 
difficult with higher ݈  values [18]. However, the model 
could not prevent the attribute disclosure in 2-diversity case. 
In addition, the SA values of the anonymized data with “݈-
diversity” model still face the skewness, the similarity and 
the sensitivity attacks.

Two enhanced privacy models: ( ݌ , ߙ  ) sensitive ݇ -
anonymity and ݌+ sensitive ݇-anonymity were proposed in 
[19], extending the ݌-Sensitive ݇-Anonymity approach. The
main focus of the new models was not on the SA values, but 
on the sensitive category that these values belong to and the 
weight by which these SA values contribute in each QI-
group. The ݌+ sensitive ݇-anonymity model restricted the 
number of distinct categories for each SA to be at least ݌
within the same QI-group. The (ߙ ,݌) sensitive ݇-anonymity 
model enforced each QI-group to have at least ݌ distinct SA 
values with their weight is at least ߙ at total. Although the 
proposed models overcame the ݇-anonymity privacy attacks 
issues, but as being generalization-based approaches, they 
suffer from the curse of dimensionality and the remarkable 
information loss. In addition, the sensitive categories’ 
similarity attack is issued in the  ݌+ sensitive ݇-anonymity 
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model. Another privacy model called ݐ -closeness was 
presented in [20], requiring that the distance between the 
distribution of a SA in any EC and the distribution of that 
SA in the overall table is no more than a threshold ݐ, using 
The Earth Mover Distance (EMD) metric [21]. The defined 
distance among the SAs made the anonymized table with ݐ-
closeness model overcame the attacks of attribute 
disclosure, similarity and skewness. However, it is not 
suitable with various data tables with numerical SAs and it
decreases the released data utility if such property is 
satisfied [22]. Besides, ݐ-closeness property requires the SA
values’ distribution to be the same in any EC, which 
damages the correlations between the QIDs and SAs. In 
[23],  anonymity model was proposed based on the ݇-anonymity model, weight and the similarity of the SA-(݇,ߛ,ݓ)
values in order to protect the anonymized data against the 
different disclosure attacks. The presented ( ݓ , ߛ , ݇ )-
anonymity principle is satisfied in any EC if this EC 
satisfies the ݇-anonymity principle, its average weight is at 
least ݓ  and its similarity is at most ߛ  . It successfully 
prevented the identity disclosure, attribute disclosure, 
similarity and sensitivity attacks on the anonymized data 
with both numeric and categorical SAs. However, it suffers 
from the curse of dimensionality, attributes correlation loss, 
information loss, long execution time due to relying on 
generalizing QIDs values. 

Anatomy privacy model was introduced in [24], which 
published the exact QIDs values grouped into ݈ -diverse 
buckets in a Quasi-Identifier Table (QIT) and the SA values 
with their counts in a Sensitive Table (ST). These separated 
tables were combined with a grouping mechanism based on 
the bucket (group) ID to construct the data tuple from the ݈-
diverse published buckets. The main focus of Anatomy was 
to use bucketization method to maintain better data 
utilization capabilities than the generalization method-based 
approaches. This occurred as the exact QIDs-distribution of 
the original data table that is captured and reflected in the 
published QIT as well. Besides, Anatomy avoided the 
information loss resulting from the QIDs generalization. 
Therefore, it caused a significant less information loss in the 
anonymized data compared to the generalization-based 
approaches [25]. The division of the QIT and ST provided 
the privacy preservation guarantee through the difficulty for 
an adversary to deduce the actual SA value of a tuple from 
the SA ݈-diverse values in the same bucket. However, the 
release of the exact QIDs values makes Anatomy facing the 
identity and membership disclosure attacks. Moreover, the 
SA ݈-diverse values in the same bucket may not avoid the 
skewness, similarity and sensitivity attacks. Additionally, 
separating QIT and ST breaks the attribute correlations 
between the values of QIDs and SAs. Authors in [26]
proposed the Permutation Anonymization (PA) model as an 
improved extension of Anatomy, which published the 
attributes values after being randomly permutated to 
increase the preserved privacy protection. This was by
reducing the probability that an intruder can match all the 

QIDs values of a victim and then deduce the corresponding 
SA value from the ݈-diverse sensitive values in the same 
bucket compared to Anatomy. Consequently, PA still 
experienced the issued limitations of Anatomy. In [27], 
another data privacy model was proposed that worked 
through dividing the microdata into groups based on de-
clustering the table tuples into groups according to their SA
values. The de-clustering operation aimed to maximize the 
number of distinct SA values as possible in each EC. ECs 
were then formed with the QIDs values without 
generalization. This allowed each EC to have various 
records with distinct SA values as possible based on a
dissimilarity function, which provided strong privacy 
preservation. 

Ambiguity and PriView privacy models were proposed in 
[28] to protect the anonymized published data against both 
the membership and attribute disclosure attacks. Ambiguity 
published a corresponding table for each attribute of the 
QIDs containing its exact values unchanged, and a Sensitive 
Table (ST) containing the SA ݈ -diverse values and their 
occurrence counts. PriView splits the original microdata into 
two tables only, each containing multiple QIDs to provide 
enhanced data utility and correlation between attributes. 
Although both models provided less information loss than 
generalization-based approaches, but Ambiguity caused 
more information loss than the other bucketization-based 
models, because of breaking the correlations between all the 
attributes. In addition, the SA ݈ -diverse values in both 
models suffered from the skewness, similarity, and 
sensitivity attacks. Ambiguity+ model as an enhanced 
version of Ambiguity was proposed in [29] to retain better 
data utility. A new count column was added to the published 
tables in Ambiguity+ to prevent the uniform distribution 
assumption for the published tables’ distinct values, in 
which more accurate data analysis was preserved rather than 
Ambiguity. However, Ambiguity+ provided the same 
privacy preservation level compared to Ambiguity.  

Authors in [30] presented an Additive Noise (AN) 
privacy model to protect the published anonymized tables 
with the ݈-diversity principle against the intruders who may 
know some of the tuples’ SA values as strong background 
knowledge. AN generalized the QIDs values of each input 
tuple in each QI-group and replaced its SA value by a 
sensitive value set consisted of its actual value and at least (݈ − 1)  random selected noise values. This prevented an 
adversary from successfully disclosing the victim’s SA 
value with a ratio higher than  1 ݈⁄  from the anonymized 
tables. Although AN maintained the frequency distribution 
of SA values from the original table, but it did not consider 
the case of the skewed SA values frequency distribution. 
Besides, satisfying the ݈ -diversity principle among the 
sensitive values set was not sufficient to avoid the skewness, 
similarity and sensitivity attacks on these sensitive values. 
Table I summarizes the comparison between the different 
SSA privacy models in terms of the attacks they protect 
against. 
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SSA Privacy Models
Privacy Disclosure Attacks

Identity
Disclosure

Membership
Disclosure

Attribute
Disclosure

Skewness
Disclosure

Similarity
Disclosure

Sensitivity
Disclosure݇-anonymity݌-Sensitive ݇-Anonymity݈-diversity݌+ sensitive ݇-anonymity

closeness-ݐsensitive ݇-anonymity (ߙ ,݌)
,ݓ) ,ߛ ݇)-anonymity
Anatomy
Permutation Anonymization (PA)
De-clustering
Ambiguity, PriView and Ambiguity+

Additive Noise Approach (AN)

Table I. A comparison between the different SSA privacy models according to the attacks they protect against. 

III. PROBLEM STATEMENT AND CONTRIBUTION

AN approach used the ݈-diversity principle to add noise 
values to the SA value of each tuple. This principle ensured 
the value diversity only among these sensitive values to be 
just different. However, it did not consider the 
relationships that may exist between these different sensitive 
values (i.e. some or all these values can be members of the 
same sensitive category or can be skewed to a certain value). 
This allowed the SA values of the anonymized tuple to face 
the skewness and similarity attacks, by which an adversary 
could acquire some information about the SA value with a
high confidence ratio. For example, suppose a data table has 
an attribute “Salary” as a numerical SA, where an 
anonymized tuple can have the values (1K, 1.1K, 1.2K) as 
the sensitive values set satisfying the ݈ -diversity principle 
(i.e. ݈=3). However, an attacker could deduce that the salary 
of this tuple’s owner is relatively low or falls in the dense 
range [1K-1.2K] by the skewness attack.  

Another instance, suppose a data table has an attribute 
“Diseases” as a categorical SA. Let an anonymized tuple has 
the values (Lymphoma, Heart attack, Leukemia) and another 
tuple has (Gastritis, Stomach cancer, Gastric ulcer) as the SA 
sensitive values set of each one, where both sets satisfy the ݈-
diversity principle (i.e. ݈ =3). However, an attacker could 
deduce that the first tuple’s owner has a Cancer disease with 
a high probability of 2/3, whereas the second tuple’s owner 
has a stomach-related disease with a high probability of 3/3 
by the similarity attack. Besides, AN generalized the QIDs 
values of the anonymized tuples, which caused a valuable 
information loss, QIDs correlation loss and decreased the 
utility of the published data. These concerns represent critical 
limitations that should be addressed.

In this paper, our contributions can be summarized as 
follows. (1) We propose the Enhanced Additive Noise 
(EAN) approach for PPTDP to anonymize the static 
microdata with SSA. EAN relies on the noise addition
concept that was employed in different previously-proposed 
approaches for privacy-preservation in data publication [3,

30-31]. (2) EAN enforces our newly-proposed privacy 
constraint on the SA values of the released tuples named “݈-
sensitive category diversity” that takes into consideration the 
semantic relationship between these sensitive values.
Compared to AN, EAN efficiently protects against the 
attribute disclosure and the skewness and similarity attacks 
on the published SA sensitive values set, which improves the 
provided privacy level of the published tuples. (3) EAN 
releases the QIDs original values instead of generalizing 
them to avoid the associated information loss, maintain the 
correlation between QIDs, and to provide better data utility
from the published table. (4) The sequential tuples 
processing method is used in EAN to anonymize all the input 
tuples individually instead of dividing them into groups. This 
is to protect against the attackers having strong background 
knowledge, like the real SA values of some tuples included 
in the original table. This also prevents the attackers from 
inferring a victim’s real SA value if it is grouped with other 
tuples having the known sensitive values. Besides, this 
considers the case of the data table as well having a skewed 
frequency distribution of SA values. (5) Finally, the resultant 
information loss in the published tuples is considered as the
data quality metric of the anonymization process in our 
proposed EAN, which was never discussed in AN approach.
EAN utilizes the information loss metrics proposed in [32]
that consider the information loss caused by only the 
inflation of SA value in each anonymized tuple in order to
measure the utility of the published table.

IV. THE ENHANCED ADDITIVE NOISE APPROACH

In this section, we introduce our proposed Enhanced 
Additive Noise (EAN) anonymization framework to 
preserve privacy of static data with SSA. First, the proposed 
data model is defined, followed by a detailed discussion for 
the proposed approach. 

A. The Data Model 
Let ܶ = ,ݏܦܫܳ}  be the static data table that is needed to {ܣܵ
be published, where ܳݏܦܫ = ,ଵܦܫܳ} ,ଶܦܫܳ . ,  ௡} are theܦܫܳ
quasi identifiers, and ܵܣ is the sensitive attribute. For each 
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input tuple ݐ ∈ ܶ , we refer to ݐ. [௜ܦܫܳ] (1 ≤ ݅ ≤ ݊) as the 
value of ௜ܦܫܳ  of ݐ  , and to .ݐ [ܣܵ]  as the sensitive value 
of ܵܣ. Let ܶ∗ be the anonymized published table of ܶ,  is ∗ݐ
the anonymized tuple of ݐ, and ݐ∗ ∈ ܶ∗.

B. The proposed framework 
EAN considers the data holder as the domain expert to 

categorize the distinct domain values of the SA into݈ different sensitive categories ଵܥ  , ଶܥ , ..., ௫ܥ  (1 ≤ ݔ ≤ ݈ ). 
Accordingly, EAN uses these values categorization with the 
guarantee of the “݈-sensitive category diversity” restriction
to add the noise values to the SA value of each input tuple.
Then, the SA sensitive values set of each tuple is shuffled 
and published with the QIDs values in the anonymized tuple 
directly.  

Definition 1. ( ݈ -sensitive category diversity) For each 
tuple ∗ݐ  ∈ ܶ∗, ∗ݐ  = .ݐ) ,[ଵܦܫܳ] .ݐ ,[ଶܦܫܳ] . . , .ݐ ,[௡ܦܫܳ] ܸܵ∗) , ܸܵ∗ is a randomly-sorted sensitive values set, representing 
the SA value of ݐ∗ in ܶ∗.  is said to fulfill the ݈-sensitive ∗ݐ
category diversity principle if and only if each sensitive 
value in ܸܵ∗  belongs to a different sensitive category ܥ௫
(1 ≤ ≥ ݔ   ݈). ܶ∗ is said to fulfill the ݈-sensitive category 
diversity principle if each ݐ௜∗ (1 ≤ ݅ ≤ |ܶ∗|)  fulfills the ݈ -
sensitive category diversity. ܵ ଵܸܥ௫ is the first SA value in 
the sensitive category ܥ௫, where 1 ≤ ݔ ≤ ݈. Fig. 1 represents 
an abstract architecture of the proposed EAN approach. 

Fig. 1. An abstract architecture of the proposed EAN approach

1) The anonymization process 
The anonymization process in EAN approach determines 

the sensitive category of ݐ. ݐ of each input [ܣܵ]  using the 
pre-defined sensitive values categorization. It then 
inflates ݐ.  which obeys ,ܮܵ into a set of sensitive values [ܣܵ]
our proposed privacy restriction “ ݈ -sensitive category 
diversity”.  ܵܮ is shuffled to generate ܸܵ∗,and then ܸܵ∗  is 
published with the exact QIDs values  ݐ. ,[ଵܦܫܳ] .ݐ ,[ଶܦܫܳ] . . , .ݐ  .∗ݐ as [௡ܦܫܳ]

2) Privacy preservation guarantees 
The “݈-sensitive category diversity” restriction adds exact 

(݈ − 1) counterfeit sensitive values to the real SA value in 
each tuple, such that each value will be associated with a
different sensitive category. Thus, there will be no semantic 
relationship among all the sensitive set values of SA in ݐ∗.
Consequently, an adversary will not be able to deduce the 
actual victim’s SA value with a confidence ratio higher 
than  1 ݈⁄ . In addition, he will not be able to infer any 
relationship or discover any additional information about the 
actual sensitive value of any ݐ∗  using the added noise 
values. Thereby, EAN can efficiently protect against the 
attribute disclosure, skewness and similarity attacks in ܶ∗. 

3) Data utility measurement 
EAN publishes the QIDs values of each ݐ with their exact 

values instead of generalizing them in order to offer better 
data utilization from the published data. This would avoid 
the information loss of the generalization, which permits 
more effective data accuracy and analysis capabilities rather 
than AN, due to the capturing of the exact QIDs-distribution 
of ܶ  in ܶ∗  as well. In this proposed EAN approach, the 
information loss metrics presented in [32] are used, which 
consider the information loss caused by only the inflation of 
SA value in each anonymized tuple to measure the utility of 
the published table. These metrics are defined as follows: 

(ܣܵ)ܮܫ                              =  |݈ − 1|݈ (∗ݐ)ܮܫ             (1)                                          = 1݊ + 1 ൥෍ ௡(௜ܦܫܳ)ܮܫ
௜ୀଵ + ൩               (2)(ܣܵ)ܮܫ

Where (ܣܵ)ܮܫ is the SA information loss, ݈ is the diversity 
parameter, ݊  is the number of QIDs, (ܦܫܳ)ܮܫ  is the 
information loss of each QID, and (∗ݐ)ܮܫ  is the total 
information loss occurred in each tuple ݐ∗. Since EAN does 
not generalize QIDs values, ܮܫ(ܳܦܫ௜) (1 ≤ ݅ ≤ ݊) is always 
equal to zero in each ݐ∗. 

4) The algorithm
EAN begins to work by loading the categorization file 

that categorizes the distinct domain values of the SA 
according to the domain expert. The value of diversity 
parameter ݈ is dynamically determined according to this 
categorization as shown in Algorithm 1.  

Furthermore, EAN reads the data table tuples 
sequentially. For each tuple ݐ  , EAN gets ݐ. [ܣܵ]  and 
generates the randomly-selected sensitive values set 
including .ݐ  [ܣܵ] , such that ݐ. [ܣܵ]  and each added value 
belong to a different sensitive category. Algorithm 2 shows 
the algorithm for the random set generation function. 
Accordingly, as shown in algorithm 3, this generated set is 
shuffled and assigned as the new SA value of ݐ  . The
anonymized tuple ݐ∗  is then published, having the exact 
QIDs values of ݐ and the new SA value that satisfy the “݈-
sensitive category diversity” restriction.
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Algorithm 1. Load_sensitivecategories 
(݈݂݁݅݊݋݅ݐܽݖ݅ݎ݋݃݁ݐܽܿ)
Input: File ݈݂ܿܽ݁݅݊݋݅ݐܽݖ݅ݎ݋݃݁ݐ

Output: sensitive-categories list senslist
1. Create new list senslist; Let l = 0 and listindex = -1;
2. Lines =Readalllines ( ݈݂ܿܽ݁݅݊݋݅ݐܽݖ݅ݎ݋݃݁ݐ);
3. For each line in Lines
4. l =l+1; listindex = listindex+1;
5. For index = 0 to senslist.count
6. If index and listindex are equal
7.          Insert (index, line) into senslist;
8. End If;
9. End For;
10. End For;
11. Return senslist;

Algorithm 2. GenerateRandomSet (ݐ. ,[ܣܵ] senslist)

Input: SA value of ݐ and sensitive-categories list senslist
Output: Sensitive random list ܵܮଵ

1. Create new list ܵܮଵ;
2. For index = 0 to senslist.count
3. If senslist [index] does not contain ݐ. [ܣܵ]
4. Select random value Svalue from senslist [index];
5. Insert Svalue into ܵܮଵ;
6. End If;
7. End For;
8. Insert ݐ. ;ଵܮܵ ݋ݐ݊݅ [ܣܵ]
9. Return ܵܮଵ;

Algorithm 3. EAN (ܶ)

Input: a data table ܶ
Output: anonymized data table ܶ∗
Precondition: EI and tuples with missing values are removed 
from 

1ܶ. For each tuple ݐ in ܶ
2. Read ݐ;
3. Create new list SL = GenerateRandomList 

.ݐ) ,[ܣܵ] ;(ݐݏ݈݅ݏ݊݁ݏ
4. Shuffle SL;
5. For index = 0 to SL.count 
6. ܸܵ∗+= SL [index];
7. End For;
8. Assign ܸܵ∗ to  ݐ. ;[ܣܵ]
9. Publish ݐ as ݐ∗;
10. End For;

V. THE EXPERIMENTAL APPROACH AND RESULTS

A framework has been developed using C# to evaluate 
our proposed EAN approach compared to AN’s reported 
results in [30]. All experiments are performed on a machine 
with the same specifications as the discussed experiments of 

AN, which are 2.8 GHz Intel core processor with RAM of 
2GB. The adult dataset from the UC Irvine Machine 
Learning Repository [33] was used in the experiments. The 
dataset consists of 32,561 tuples. The tuples with missing 
values were removed, where 30,162 valid tuples were used 
in our experiments. The same 8 attributes utilized in [30] 
were also selected in our experiments, which are the age, 
work class, education, marital-status, occupation, race, sex 
and country. The occupation is the SA and the other 
attributes are the QIDs. Several experiments were held to 
study the effect of changing the dataset size on the execution 
time of AN and EAN approaches, while fixing the diversity 
parameter  ݈ . Other experiments were dedicated to 
investigate how the execution time of both approaches is 
affected by varying the diversity parameter ݈, while fixing 
the dataset size. Besides, the resultant information loss per 
each tuple was also studied, while changing the diversity 
parameter  ݈  in EAN approach. All the parameters’ values 
were set to be the same values as in AN’s reported 
experiments [30] in order to settle the same testing 
environment of both approaches for a fair comparative 
evaluation. EAN used the sequential tuples processing 
method to anonymize all the input tuples individually. This 
makes the input tuples have a different set of sensitive 
values even if they have a similar SA value. Consequently, 
EAN takes into consideration the data tables having SA 
values with a skewed frequency distribution. Thus, our
experiments can be categorized into three main categories as 
explained herein.

A. Execution time with different dataset sizes 
The effect of changing the dataset size is studied with 

respect to the execution time of AN and EAN approaches, 
while fixing the diversity parameter. The diversity 
parameter is set to ݈ = 5. As shown in Fig. 2 representing the 
execution time of both AN and EAN approaches, when the 
size of the dataset increases, the number of tuples needed to 
be anonymized increases. Thus, the execution time of both 
approaches increases. 

Fig. 2. Execution time for the different dataset sizes.

When the dataset size is 5K, AN consumes 0.13s to 
anonymize the tuples, while EAN consumes 0.18s with 
+0.05s representing 38.4% percentage increase. With the 
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dataset size of 10K, AN consumes 0.22s and EAN 
consumes 0.3s with +0.08s representing 36.3% percentage 
increase. In case of the 15K dataset size, AN consumes 
0.32s and EAN consumes 0.46s with +0.14s representing 
43.7% percentage increase. With the 20K dataset size, AN 
consumes 0.42s and EAN consumes 0.61s with +0.19s 
representing 45.2% percentage increase. When the dataset 
size was 25K, AN spends 0.53s to finish the anonymization, 
while EAN spends 0.76s with +0.23s representing 43.4% 
percentage increase. Finally, with the dataset size of 30K, 
AN spends 0.63s and EAN spends 0.9s with +0.27s 
representing 42.8% percentage increase.  Thus, EAN needs 
an average of 41.6% additional execution time to anonymize 
the same dataset size, compared to AN. This is due to the 
additional restriction for choosing a random sensitive value 
that must belong to a different sensitive category from all 
other values in the same sensitive set for each ݐ∗. 

B. Execution time with different diversity parameters 
The effect of changing the diversity parameter ݈ is studied 

with respect to the execution time of AN and EAN 
approaches, while fixing the dataset size. The dataset size 
was set to 20K. As shown in Fig. 3, when the diversity 
parameter ݈  increases, the number of the noise values 
needed to be added in each tuple increases. Thus, the 
execution time of both AN and EAN approaches increases.
When the diversity parameter ݈= 3, AN consumes 0.32s to 
anonymize the tuples, while EAN consumes 0.42s with 
+0.1s representing 31.2% percentage increase. With ݈ = 5,
AN consumes 0.42s and EAN consumes 0.61s with +0.19s
representing 45.2% percentage increase. In case of ݈ = 7,
AN consumes 0.61s and EAN consumes 0.8s with +0.19s
representing 31.1% percentage increase. With ݈  = 10, AN 
consumes 0.95s and EAN consumes 1.1s with +0.15s
representing 15.7% percentage increase. Hence, the 
changing in the diversity parameter makes EAN consumes 
an average of 30.8% additional execution time compared to
AN approach. This is due to the same additional restriction 
reason explained earlier for choosing a random sensitive 
value that must belong to a different sensitive category from 
all other values in the same sensitive set for each ݐ∗. 

Fig. 3. Execution time with different diversity parameters 

C. Information loss per tuple with different diversity 
parameters 

In this experiment, the information loss occurred in each 
tuple due to the anonymization process is studied using the 
information loss metrics in (1) and (2). The experimentation 
of EAN approach is studied only, as the information loss per 
tuple was not considered in the results of AN reported in 
[30]. AN used the correlation loss metric to measure the 
utility of the anonymized data, which measures the SA and 
QIDs correlation in each divided group. Hence, it is not 
appropriate to be used with EAN, which does not partition 
the data table into groups. The results of EAN approach is 
shown in Fig. 4. 

Fig. 4. Information loss per tuple with different diversity parameters. 

As the diversity parameter ݈ increases, more noise values 
are required to be added in each tuple. Thus, the information 
loss per tuple increases. When the diversity parameter ݈ = 3, 
EAN incurred an information loss of 0.083 per each tuple. 
With ݈ = 5, the resultant information loss per each tuple was 
0.1. When ݈  = 7, each anonymized tuple by EAN had an 
information loss of 0.107. When ݈= 10, EAN incurred an 
information loss of 0.1125 per each tuple. However, 
compared to AN, EAN incurs less information loss per 
tuple, as it does not generalize the QIDs values, which 
makes EAN avoid the generalization information loss on the 
contrary of that in AN.

VI. CONCLUSION

In this paper, the Enhanced Additive Noise (EAN) is 
introduced to anonymize the static microdata with Single 
Sensitive Attribute (SSA) with our newly-proposed “ ݈ - 
sensitive category diversity” privacy restriction. Each value 
in the sensitive values set in each anonymized tuple must 
belong to a different sensitive category. The experimental 
results show that EAN, compared to AN, consumes an 
average of 41.6% additional execution time to anonymize 
the same dataset size while fixing the diversity parameter, 
and an average of 30.8% additional execution time when the 
diversity parameter is changeable. This is due to the 
additional restriction for choosing a random sensitive value 
that must belong to a different sensitive category from all 
other values in the same sensitive set for each ݐ∗. However,
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EAN preserves better data utility and results in less 
information loss even with high ݈  values. Besides, EAN 
efficiently protects against the attribute disclosure, skewness 
and similarity attacks on the SA values in the published 
data. Moreover, it considers the case of data tables having 
SA values with a skewed frequency distribution.
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