

Entomology Department Faculty of Science Ain Shams University

Assessment of plant waste-derived essential oils as nanopesticide against larvae of *Culex pipiens* L. (Diptera: Culicidae)

A thesis submitted to the Department of Entomology, Faculty of science, Ain Shams University for the award of the Ph.D. degree of science in entomology

Submitted by

Radwa Mahmoud Azmy Abdel Hamid

Supervisors

Prof. Dr. Mohamed Sayed Salama

Professor of Molecular Biology -Entomology Department, Faculty of Science, Ain Shams University

Dr. Dalia Abdel Badea Salem

Associate Professor-Entomology Department, Faculty of Science, Ain Shams University

Dr. Dalia Mohammed Mahmoud

Associate Professor-Entomology Department, Faculty of Science, Ain Shams University

Dr. El Goharie El Sa'yed Atia

Associate Professor, Entomology Department- Faculty of Science-Ain Shams University

Dr. Mohamed Ali Mahmoud Abdou

Associate Professor, Entomology Department- Faculty of Science-Ain Shams University

2019

Biography

Name: Radwa Mahmoud Azmy Abdel Hamid

Qualification: M.Sc. (Entomology), Entomology Department, Faculty of Science, Ain Shams University.

Present occupation: Assistant lecturer, Entomology Department, Faculty of Science, Ain Shams University.

Thesis	Examination	Committee
--------	-------------	-----------

Name	Title	Signature
	Professor of Genetics and	
Prof. Dr. Sobhy El	Molecular Biology, Zoology	
Sayed Hasab El Naby	Department, Faculty of Scienc,	
	Menoufia University.	
Prof. Dr. Emtithal	Professor of Molecular Biology,	
Mohamed Abd-El	Entomology, Department,	
Samie Ali	Faculty of Scienc, Cairo	
	University.	
	Professor of Molecular Biology,	
Prof. Dr. Mohamed	Entomology Department,	
Sayed Salama	Faculty of Science, Ain Shams	
	University.	

Board of supervision

Prof. Dr. Mohamed Sayed Salama

Professor of Molecular Biology -Entomology Department, Faculty of Science, Ain Shams University.

Dr. Dalia Abdel Badea Salem

Associate Professor-Entomology Department, Faculty of Science, Ain Shams University.

Dr. Dalia Mohammed Mahmoud

Associate Professor-Entomology Department, Faculty of Science, Ain Shams University.

Dr. El Goharie El Sa'yed Atia

Associate Professor, Entomology Department- Faculty of Science-Ain Shams University.

Dr. Mohamed Ali Mahmoud Abdou

Associate Professor, Entomology Department- Faculty of Science-Ain Shams University

Approval sheet

(Ph.D. thesis)

Name: Radwa Mahmoud Azmy Abdel Hamid

Title: Assessment of plant waste-derived essential oils as nanopesticide against larvae of *Culex pipiens* L. (Diptera: Culicidae) **Supervision committee:**

Prof. Dr. Mohamed Sayed Salama

Professor of Molecular Biology -Entomology Department, Faculty of Science, Ain Shams University

Dr. Dalia Abdel Badea Salem

Associate Professor-Entomology Department, Faculty of Science, Ain Shams University

Dr. Dalia Mohammed Mahmoud

Associate Professor-Entomology Department, Faculty of Science, Ain Shams University

Dr. El Goharie El Sa'yed Atia

Associate Professor, Entomology Department- Faculty of Science-Ain Shams University

Dr. Mohamed Ali Mahmoud Abdou

Associate Professor, Entomology Department- Faculty of Science-Ain Shams University

Examination committee:

-Prof. Dr. Sobhy El Sayed Hasab El Nabi: Professor of Molecular

Biology, Zoology Department, Faculty of Scienc, Menoufia University.

- **Prof. Dr. Emtithal Mohamed Abd-El Samie Ali**: Professor of Molecular Biology, Entomology, Department, Faculty of Scienc, Cairo University.

- **Prof. Dr. Mohamed Sayed Salama:** Professor of Molecular Biology - Entomology Department, Faculty of Science, Ain Shams University.

Acknowledgment

First of all, I would like to express my all-embracing gratitude and praise to **ALLAH** the Almighty.

I am highly thankful to the Post-Graduate Studies and Research Sector of Ain Shams University for funding a scientific project which included this study from **2017** to 2019 under supervision of the PI Prof. Dr. Mohamed Sayed Salama, Professor of Molecular Biology -Entomology Department, Faculty of Science, Ain Shams University.

I also thank the Post-Graduate Studies and Research Sector of the Faculty of Science, Ain Shams University due to their fund for international publication.

I would like to seize the opportunity to show off my greatest loyalty to my supervisor **Prof. Dr. Mohamed Sayed Salama**, Professor of Molecular Biology and Vice Dean of Post-Graduate Studies and Research, Ain Shams University, for his initiating power, effective scientific supervision, continuous encouragement and his generous help, he put all the facilities of his laboratory at my disposal. It was a great honor to work under his supervision.

Great thanks to Dr. **Dalia Abdel Badea Salem**, Associate professor of Entomology, Faculty of Science, Ain Shams University, for her generous support and her effort and leading comments in this study and reviewing the write up.

I'm deeply thankful to Dr. **Dalia Mohamed Mahmoud,** Associate professor of Entomology, Faculty of Science, Ain Shams University, for her help in modeling up my research work, her continuous support, cooperative spirit displayed in work and in writing and reviewing this thesis.

I would like also to express my gratitude to **Dr. El Gohary El Saied Attia**, Associate professor of Entomology, Faculty of Science, Ain Shams University, for sharing me many ideas during this study, his support and leading comments in reviewing this work.

Never to forget the kind and continuous help and scholarly advices during the steps of this study offered by Dr. **Mohamed Ali Abdou**, Associate professor of Entomology, Faculty of Science, Ain Shams University.

Special thanks and gratitude to my professors and colleagues, Department of Entomology, Faculty of Science, Ain Shams University.

Table of contents

Contents	Page
I-Introduction	2
II-Literature review	7
1-Chemical composition and insecticidal activity of EOs against mosquito.	7
2-Preparation, characterization and insecticidal activity of nano- emulsions based on EOs.	14
3- Morphological observations	16
4-Biochemical studies of insects treated with plant oils.	17
5-Histopathology and ultrastructure studies of insects treated with plant oils	20
III-Materials & Methods	24
1-Maintenance of the Cx. pipiens L. (Diptera: Culicidae) colony	24
2-Extarction of EOs.	25
3-Gas Chromatography Mass Spectrometry (GC-MS)	25
4-Nano-emulsion preparation	26
5. Characterization of nano-emulsion	26
5.1. Droplet Size Distribution & PDI	26
5.2. Physical characterization	27
5.3. Stability	27
6. Bioassay tests	27
7-Morphological observations:	29
8. Analysis of protein	29
9.1. Preparation of the stock solutions:	31
9.2. Preparation of electrophoresis gel	32
9.3. Preparation of the samples	33
9.4. Sample application and electrophoresis conditions for protein fractionation and SDS-protein patterns analysis	33
10- Biochemical effect of the nano-emulsions and the EOs dissolved in absolute ethanol on the enzymes of <i>Cx. pipiens</i> larvae:	34

10.1-Determination of Acid phosphatase activity	34
10.2- Determination of Alkaline phosphatase activity	35
10.3- Determination of Acetylcholinesterase activity	35
10.4- Determination of Glutathione S-transferase (GST) activity	36
11-Histological and ultra-structural studies	37
11.1-Preparation of specimens	37
11.2-Fixation	37
11.3-Dehydration	38
11.4- Embedding	38
11.5-Infiltration with the resin mixture	38
11.6-Preparation of toluidine blue stain	39
11.7-Sectioning	39
11.8-Preparation of ultra-thin sections	39
11.9-Grids preparation	40
11.10-Staining	40
12. Statistical analysis	41
IV-Results	42
1-Extraction of the EOs:	42
2-Gas Chromatography Mass Spectrometry (GC-MS)	43
2.1-Components of C. aurantifolia	44
2.2- Components of C. sinensis	42
3- Characterization of the formulated nano-emulsion	45
3.1-Droplet size& PDI	46
3.2. Physical characterization	51
3. 3. Stability of nano-emulsion	51
4-Bioassay	52

5-Morphological observations	57
6-Biochemical studies	58
6.1-Analysis of protein	58
6.2-Protein profile analysis using sodium dodecyl sulfate polyacryl -amide gel electrophoresis (SDS-PAGE)	59
6.3: effect of the nano-emulsions and the EOs dissolved in absolute ethanol on the enzymes of <i>Cx. pipiens</i> larvae	62
6.3.1-Detemination of the activity of acid phosphatase	62
6.3.2-Detemination of the activity of alkaline phosphatase	65
6.3.3-Detemination of the activity of acetylcholinesterase	67
6.3.4-Determination of Glutathione S-transferase (GST) activity	69
7-Histological and ultra-structural studies	71
A – Histological studies	71
B- Ultra-structural studies	73
1-The integument	73
2-skeletal muscles	75
3-Midgut	77
V-Discussion	80
1-Chemical constitution of the Extracted EOs of C.	81
aurantifolia and C. sinensis by GC-MS	
2- Characterization of the formulated nano-emulsion	82
2.1-Droplet size& PDI	82
2.2. Physical characterization	83
2. 3. Stability of nano-emulsion	83
3- Bioassay tests	84
4-Morphological observations	86
5-Biochemical studies	87
5.1- Analysis of protein	87

5.2- effect of the nano-emulsions and the EOs dissolved in	89
absolute ethanol on the enzymes of Cx. pipiens larvae	
6-Histological and ultastuctural studies	91
VI-Summary	96
VII-References	98
VIII-Arabic summary	127

List of figures

No.	Title	Pa
		ge
1	Standard curve of bovine serum albumin	30
2	The extracted EOs; A: C. aurantifolia, B: C. sinensis	42
3	GC-MS chromatogram of chemical components of the	43
	EO of <i>C. aurantifolia</i> by using GC-MS analysis.	
4	GC-MS chromatogram of chemical components of the	44
	EO of C. sinensis by using GC-MS analysis	
5	The formulated nano-emulsion of C. aurantifolia.	45
6	The formulated nano-emulsion of <i>sinensis</i> .	45
7	Droplet size distribution of the nano-emulsion droplets of	46
	C. aurantifolia EO by DLS	
8	Droplet size distribution of C. aurantifolia EO nano-	47
	emulsion with the peak at 16.11 nm	
9	Droplet size distribution of C. aurantifolia EO bulk	48
	emulsion with the peak at 1564 nm	
10	Droplet size distribution of the nano-emulsion droplets of	49
	C. sinensis EO by DLS	
11	Droplet size distribution of C. sinensis EO nano-emulsion	50
	with a peak at 42.75 nm	
12	Droplet size distribution of C. sinensis EO bulk emulsion	51
	with the peak at 1564 nm.	
13	Regression line of probit mortality of Cx. pipiens larvae	54
	against the log concentrations of nano-emulsion, bulk	
	emulsion of C. aurantifolia	
14	Regression line of probit mortality of Cx. pipiens larvae	54
	against the log concentrations of nano-emulsion, bulk	

	emulsion of C. sinensis.	
15	LC ₂₅ , LC ₅₀ of of nano-emulsion, bulk emulsion and the	55
	EO of C. aurantifolia dissolved in absolute ethanol	
	against 3 rd instar <i>Cx. pipiens</i> larvae after 24 hrs	
16	LC ₂₅ , LC ₅₀ of of nano-emulsion, bulk emulsion and the	56
	EO of C. sinensis dissolved in absolute ethanol against	
	3rd instar Cx. pipiens larvae after 24 hrs	
17	Photomicrographs of Terminal segment of the Cx.	57
	pipiens larvae under stereomicroscope (10×). (A) The	
	control larva. (B-D) The larva treated with LC50 of the	
	nanoemulsion of C. aurantifolia EO. (E-G) The larva	
	treated with LC50 of the nanoemulsion of C. sinensis EO	
18	Effect of LC ₅₀ values of the tested larvicides on total	59
	protein of <i>Cx. pipiens</i> larvae.	
19	SDS-electrophoretic protein patterns of untreated and	60
	treated samples of Cx. pipiens larvae.	
20	Effect of LC ₅₀ values of the tested larvicides on the	64
	activity of acid phosphatase in <i>Cx. pipiens</i> larvae.	
21	Effect of LC ₅₀ values of the tested larvicides on the	65
	activity of alkaline phosphatase in <i>Cx. pipiens</i> larvae.	
22	Effect of LC_{50} values of the tested larvicides on the	69
	activity acetylcholinesterase in <i>Cx. pipiens</i> larvae.	
23	Effect of LC_{50} values of the tested larvicides on the	70
0.1	activity of GST acetylcholinesterase in <i>Cx. pipiens</i> larvae.	
24	Semi-thin cross-section of third instar larva of Cx . pipiens	72
	(x=40); A: untreated, B: treated with <i>C.aurantifolia</i> EO	
	nano-emulsion, C: treated with <i>C. sinensis</i> EO nano-	
	emulsion, D: treated with C. aurantifolia EO dissolved in	

	absolute ethanol, E: treated with C.sinensis EO dissolved	
	in absolute ethanol	
25	TEM microphotograph of the cuticle layers of third	74
	instar larva of Cx. pipiens; A: untreated (x=20000), B:	
	untreated (x=10000), C: treated larva with C. aurantifolia	
	EO nano-emulsion (x=10000), D: treated larva with C.	
	sinensis EO nano-emulsion (x=6000), E: treated larva	
	with C. aurantifolia EO dissolved in absolute ethanol	
	(x=5000),	
26	TEM microphotograph of cross-sectioned skeletal muscle	76
	fibrils in third instar larva of Cx. pipiens; A: untreated	
	(x=20000), B: treated with C. aurantifolia EO nano-	
	emulsion (x=12000), C: treated with C. sinensis	
	(x=6000)EO nano-emulsion, D: of treated larva with C.	
	aurantifolia EO dissolved in absolute ethanol (x=8000),	
	E: treated with C. sinensis EO dissolved in absolute	
	ethanol	
27	TEM microphotograph of cross-sectioned midgut of	79
	larva of Cx. pipiens nano-emulsion; A: untreated	
	(x=5000), B: untreated(x=20000), C: treated with C.	
	aurantifolia EO nano-emulsion (x=80000), D: treated	
	with C. sinensis EO nano-emulsion (x=10000), E: treated	
	with C. sinensis EO nano-emulsion (x=20000), F, G:	
	treated with C. aurantifolia EO dissolved in absolute	
	ethanol(x=20000), H: treated with C. sinensis EO	
	dissolved in absolute ethanol (x=20000)	
		l

List of tables

No.	Title	Page
1	Plants investigated for toxicological activities against larvae of <i>Cx. pipiens</i> .	25
2	The main components identified in <i>C. aurantifolia</i> EO by using GC-MS	43
3	The main components identified in <i>C. sinensis</i> EO by using GC-MS	44
4	The size of the nano-emulsion droplets of <i>C</i> . <i>aurantifolia</i>	47
5	The size of the nano-emulsion droplets of C. sinensis	49
6	Mortality percentages of 3 rd instar <i>Cx. pipiens</i> larvae treated with nano-emulsion, bulk emulsion and the EO of <i>C. aurantifolia</i> dissolved in absolute ethanol after 24 hrs post treatment.	53
7	Mortality percentages of 3 rd instar <i>Cx. pipiens</i> larvae treated with nano-emulsion, bulk emulsion and the EO of C. <i>sinensis</i> dissolved in absolute ethanol after 24 hrs post treatment.	53
8	Effect of LC ₅₀ values of the tested larvicides on total protein of Cx. pipiens larvae	58
9	Molecular weights of SDS-protein patterns for both untreated and treated samples of <i>Cx. pipiens</i> 3 rd larval instar.	61
10	Percentag amount of SDS-protein patterns for both untreated and treated samples of <i>Cx. pipiens</i> 3rd larval instar	61
11	Effect of LC_{50} values of the nano-emulsion of <i>C</i> . <i>aurantifolia</i> and <i>C</i> . <i>aurantifolia</i> EO dissolved in absolute ethanol on the activity of acid phosphatase in <i>Cx. pipiens</i> larvae.	63
12	Effect of LC ₅₀ values of the nano-emulsion of <i>C</i> . sinensis and <i>C</i> . sinensis EO dissolved in absolute ethanol on the activity of acid phosphatase in <i>Cx</i> . pipiens larvae.	63

13	Effect of LC ₅₀ values of the nano-emulsion of <i>C</i> .	66
	aurantifolia and C. aurantifolia EO dissolved in	00
	absolute ethanol on the activity of alkaline	
	phosphatase in <i>Cx. pipiens</i> larvae.	
14		67
14	Effect of LC_{50} values of the nano-emulsion of <i>C</i> .	07
	sinensis and C. sinensis EO dissolved in absolute	
	ethanol on the activity of alkaline phosphatase in <i>Cx</i> .	
	pipiens larvae.	
15	Effect of LC ₅₀ values of the nano-emulsion of <i>C</i> .	68
	aurantifolia and C. aurantifolia EO dissolved in	
	absolute ethanol on the activity of acetylcholinesterase	
	in <i>Cx. pipiens</i> larvae.	
16	Effect of LC ₅₀ values of the nano-emulsion of <i>C</i> .	69
	sinensis and C. sinensis EO dissolved in absolute	
	ethanol on the activity of acetylcholinesterase in Cx.	
	<i>pipiens</i> larvae.	
17	Effect of LC ₅₀ values of the nano-emulsion of <i>C</i> .	70
	aurantifolia and C. aurantifolia EO dissolved in	
	absolute ethanol on the activity of GST in Cx. pipiens	
	larvae.	
18	Effect of LC ₅₀ values of the nano-emulsion of <i>C</i> .	71
	sinensis and C. sinensis EO dissolved in absolute	
	ethanol on the activity of GST in <i>Cx. pipiens</i> larvae.	