

Power Doppler Ultrasonography vs MRI in Evaluation of Rheumatoid Arthritis Wrist and Hand

Thesis

Submitted for Partial Fulfillment of Master Degree in **Radiodiagnosis**

Presented by

Menna Allah Ahmad Mohammed Abdalhak (M.B.B.Ch)

Supervised by

Prof. Dr. Laila Ahmad Abdurrahman

Professor of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Dr. Nermeen Nasry Halim

Lecturer of Radiodiagnosis
Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain shams University
2019

سورة التوبة الآية (١٠٥)

First of all, thanks to ATTAM for helping me to carry out this work.

Twould like to express my deepest feeling of gratitude to **Prof. Dr. Taila Ahmad Abdurrahman**, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University. For her valuable instruction, her vast experience and meticulous supervision, her continuous encouragement and support in deed gave me a push to work hard.

All my respect to **Dr. Nermeen Nasry Halim**, Tecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University; for her effort, supervision and encouragement.

I dedicate this work to my family especially Soul of My dad.

Menna Allah Ahmad Mohammed

Contents

Subjects Pa	ge
List of abbreviation	I
List of tables	Ш
List of figures	V
Illustrative cases	X
Introduction	1
Aim of the work	3
Review of literature	
• Chapter (1): Anatomy of the Wrist AND HAND	5
• Chapter (2): Clinico-pathological Aspects	of
Rheumatoid Arthritis	.35
• Chapter (3):	
(A) MRI Manifestations of Rheumatoid Arthritis	of
Wrist and Hand	.42
(B) Role of Musckolskeletal Ultrasound	in
Rheumatoid Arthritis	.50
Patients and methods	.60
Results	.65
Illustrative Cases	.75
Discussion	.89
Summary and Conclusion	.97
References	100
Arabic summary	

List of Abbreviations

BME: Bone marrow edema

CMC : Carpometacarpal joint

DIP : Distal interphalangeal

DRUJ: Distal radioulnar joint

EDL : Extensor digitorum longus tendon

FDP : Profundus

FDS: Flexor digitorum superficialis

HIF-1 and : Hypoxia-inducible factor

HIF-2

HS: Highly significant

IC : Intercarpal joint

L : Lunate

LT : Lister's tubercle

MCP : Metacarpophalangeal

MRI : Magnetic resonance imaging

MSKUS: Musculoskeletal ultrasound

NS : Non significant

P : Pisiform

PDUS: Power Doppler ultrasonography

PIP : Proximal interphalangeal

PP : Proximal phalanx

RA : Rheumatoid Arthritis

RC : Radiocarpal joint

RF : Rheumatoid Factors

S : Scaphoid

S : Significant

T : Triquetrum

TFCC: Triangular fibrocartilage complex

US : Ultrasonography

VEGF : Vascular endothelial growth factor

List of Tables

Tables	\tag{2}	Page		
No.	€ Title			
1	Omeract scoring system.	48		
2	MRI technical parameters.	63		
3	Demographic data distribution of the			
	rheumatoid arthritis group.			
4	Comparison between ultrasound and MRI as			
	regard detection of joint effusion among the			
	RA group.			
5	Comparison between ultrasound and MRI as 6			
	regard detection of erosions in RA patients.			
6	Comparison between ultrasound and MRI as 69			
	regard detection of synovial hypertrophy in			
	RA patients.			
7	Comparison between ultrasound and MRI as			
	regard synovial activity "Synovitis"			
	detection.			
8	Relation between US and MRI in the 7			
	detection of effusion of wrist and hand			
	joints.			

Tables No.	Title	Page No.	
9	Relation between US and MRI in the	72	
	detection of erosions of wrist and hand		
	joints.		
10	Relation between US and MRI in the	73	
	detection of synovial hypertrophy of wrist		
	and hand joints.		
11	Relation between US and MRI in the	74	
	detection of synovial activity "synovitis" of		
	wrist and hand joints.		

List of Figures

Fig. No.	Title			
1	Carpal anatomy, three-dimensional CT	6		
	images show the normal wrist.			
2	Radiocarpal joint.	7		
3	Distal radioulnar, radiocarpal, and mid			
	carpal joints.			
4	Extensor Tendons with the Six Tendon			
	Sheath Compartments (Dorsum of the Wrist)			
5	Anatomy of the carpal tunnel.			
6	Axial localizer slice shows proper	17		
	orientation of wrist.			
7	Coronal T1 WIS showing the hypointense			
	bands of the flexor digitorum tendons			
8	Coronal 3D GRE image shows the extensor			
	capi ulnaris tendon.			
9	Dorsal ligaments. Coronal MR arthrogram			
	image.			
10	Coronal STRI WIS showing the Triangular			
	Fibrocartilage.			

Fig.	Title	Page No.		
11	Axial T1 WIS showing the median nerve, FP	22		
	(flexor pollicis longus) & AP (adductor			
	pollic) tendons.			
12	Axial spin-echo T1-weighted image show	22		
	the thickened margins of the TFC.			
13	(a) Probe position for compartments 1 to 6.	26		
	(b) Axial image of the wrist showing			
	compartment 2. (c) Axial ultrasound image			
	showing compartment 1. (d) Axial image			
	showing compartment 3 on the ulna aspect			
	of Lister's tubercle and compartment 2 on			
	the ulna aspect.			
14	(a) Axial image showing compartment 4 (b) 27			
	Axial image showing compartment 5.			
15	(a) Axial image showing compartment 6. (b) 27			
	Sagittal image showing compartment 6.			
16	(a) Probe position for carpal tunnel. (b)	29		
	Axial image of the proximal carpal tunnel.			
	(c) Axial image of the distal carpal tunnel.			
	(d) Axial image demonstrating the ulnar			
	nerve in Guyon's canal adjacent to the			

Fig.	Title	Page No.		
	pisiform and medial to the ulnar artery.			
17	Transverse & sagittal image of the flexor pollicis longus.			
18	(a)Position of a probe in the long axis for the evaluation of the flexor tendons. (b) Long axis of the proximal phalanx (c) Extended field of view (EFOV) in the long axis showing the flexor digitorum profundus.			
19	A longitudinal scan in the middle of the wrist with the extensor digitorum longus tendon.			
20	Post-contrast fat-suppressed coronal T1- 44 weighted magnetic resonance imaging of the hand demonstrating an erosion.			
21	Axial proton density-weighted fat-saturated post-contrast magnetic resonance imaging at the level of the metacarpal bones demonstrating enhancement of the flexor tendons within the flexor compartment in keeping with tenosynovitis.	45		
22	(a) Coronal T1 weighted image of the	47		

Fig.	⊋it[a	Page		
No.	Title	Page No.		
	indicating bone edema involving the entire			
	lunate bone. (b) Equivalent image following			
	the injection of contrast GdDPTA. (c) Axial			
	T2w image confirming bone oedema at the			
	lunate.			
23	Long axis (coronal) ultrasound image along			
	radial aspect of wrist shows low-reflective			
	synovitis.			
24	Ultrasound gray-scale image of the dorsal			
	wrist, longitudinal view.			
25	Moderate synovitis and bloodflow. Compare			
	synovial thickening with effusion.			
26	Small effusion on the flexor aspect of the	53		
	proximal interphalangeal joint.			
27	Tenosynovitis of the extensor digitorum	54		
	longus of the hand.			
28	Synovial thickening with underlying	55		
	metacarpal head erosion.			
29	Sagittal image of the extensor aspect of an			
	inflamed metacarpo-phalangeal joint.			
30	Sagittal image of the extensor aspect of an	57		

Fig. No.	Title	Page No.		
	inflamed metacarpophalangeal joint.			
31	Sagittal image of the extensor aspect of an	58		
	inflamed metacarpo-phalangeal joint.			
32	Doppler image with synovitis of the third			
	metatarso-phalangeal joint.			
33	Screen capture during colour Doppler	59		
	examination of the finger, showing			
	automated calculation of resistive index.			
34	Pie chart distribution of the RA group.			
35	Comparison between ultrasound and MRI as			
	regard joint effusion in RA patients.			
36	Comparison between ultrasound and MRI as			
	regard erosions in the RA patients.			
37	Comparison between ultrasound and MRI	69		
	regarding detection of synovial hypertrophy.			
38	Comparison between ultrasound and MRI	70		
	considering synovitis detection.			

Illustrative cases

Title	Page No.
Case 1	75
Case 2	77
Case 3	80
Case 4	83
Case 5	86

Introduction

Rheumatoid Arthritis (RA) is a chronic systemic autoimmune disorder of unknown etiology characterized by symmetrical joint synovitis and pain. RA has a wide clinical spectrum and may vary from mild, non-erosive disease to severe inflammation and joint damage with extra-articular manifestations. The wrist and hand joints are affected early in the disease process, with some deformities occurring in the first two years of the disease (*Adams et al.*, 2004).

RA is characterized by proliferative, hyper vascularized synovitis, resulting in bone erosion, cartilage damage, joint destruction, and long-term disability. Until recently, the absence of effective treatment to prevent joint destruction has limited the need for more sensitive imaging techniques. Availability of powerful and expensive drugs has created new demands on radiologists to identify patients with aggressive RA at an early stage to affect the therapeutic management of these patients (*Boutry et al.*, 2007).