The Role of PET CT In Comparison To Triphasic CT in Early Follow Up of
 Hepatocellular Carcinoma after Transarterial Chemoemoblization

Ohesis

Submitted for Partial Fulfillment of the $\mathcal{M D}$
 Degree in Radio-Diagnosis
 $B y$

Hany Rafat Atyia EL -Malah

M. Sc of Radiodiagnosis

Faculty of Medicine- Ain Shams University

Supervised by

Prof. Dr. Mounir Sobhy Guirguis

Professor of Radiodiagnosis
Faculty of Medicine- Ain Shams University

Ass. Prof. Dr. Enas Ahmed Azzab

Ass. Professor of Radiodiagnosis
Faculty of Medicine- Ain Shams University
Ass. Prof. Dr. Waleed Hetta
Ass. Professor of Radiodiagnosis
Faculty of Medicine- Ain Shams University
Faculty of Medicine
Ain Shams University

Acknowledqument

2. First and foremost, my deep gratefulness and indebtedness is to Allah, the Gost Gracious and the OHost OCerciful.
3. I wish to express $m y$ deep gratitude and respect to Drof. Dr. SYounir Sobhy Guirguis Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his valuable advices, continuous encouragement, judicious guidance and kind support at this study.
4. T would like to express my great thanks to Ass. Drof. Dr Conas Afrmed Azeab Ass. Professor of Radiodiagnosis, Faculty of OCedicine, Ain Shams Ziniversity, for her patience, sincere advice and kind support all through this study.
5. Special thanks are due to Ass. Drof. Dr GWaleed Fretta Ass. Drofessor of Radiodiagnosis Faculty of Medicine, Ain Shams University for his sincere efforts and fruitful encouragement.
6. I would also like to thank all $m y$ collegues who extended to me a helping fand for this work.
7. Gastly and not least, I send $m y$ deepest love to $m y$ parents, wife and $m y$ daughter THabiba for their care and ever [asting support.

29 Hany Rafat Atyia TET-OMalah

List of Contents

obitle Page
List of Abbreviations I
List of Tables IV
List of Figures V
Illustrated Cases VIII
Introduction 1
Aim of the work 4
Review of literature
Radiological anatomy of the liver 5
Pathological considerations 15
Technique of PET CT and Triphasic CT 24
Role of PET CT and Triphasic CT in the early follow up
of HCC after transarterial chemoembolization 44
Patients and methods 52
Results 61
Illustrative cases 68
Discussion 86
Summary and conclusion 96
References 99
Arabic summary

List of Abbreviation

AFP	Alpha-fetoprotein
BGO	Bismuth germanate
CBD	Common bile duct
CECT	Contrast enhanced computed tomography
CHA	Common hepatic artery
CHD	Common hepatic duct
CT	Computed tomography. correction
CTAC	European Association for the Study of the Liver
EASL	Fluorodeoxyglucose
FDG	Gall bladder.
GB	Gastroduodenal artery
GDA	Glucose transporter
GLUT	Gadolinium oxyorthosilicate
GSO	Hepatocellular carcinoma
HCC	Hepatitis C virus
HCV	Hexokinase enzyme
HK enzyme	Inferior vena cava
IMV	IVferior mesenteric vein
kBq	Kolobecquerel

Kev	Kiloelectron volt
Kg	Kilogram
LGA	Left gastric artery
LHA	Left hepatic artery
LHV	Left hepatic vein
LPV	Left portal vein
LSECs	Liver sinusoidal endothelial cells
LSO	Lutetium oxyorthosilicate
mCi	Millicurie
MHV	Middle hepatic vein
MIP	Maximum intensity projection
MPV	Main portal vein
mRECIST	Modified Response Evaluation Criteria in Solid Tumors
MRI	Magnetic Resonance imaging
N/C ratio	Nuclear/cytoplasmic ratio
Nal	Sodium iodide
NASH	Nonalcoholic steatohepatitis
PET	Positron Emission Tomography
PMT	Photomultiplier tube
PV	Portal vein
PVTT	Portal vein tumoral thrombosis
RAPV	Right anterior portal vein
RECIST	Response Evaluation Criteria in Solid

	Tumors
RFA	Radiofrequency ablation
RHA	Right hepatic artery
ROI	Region of interest
RPPV	Right portal vein
RPV	Splenic artery
RRA	Superior mesenteric artery
SA	Superior mesenteric vein
SMA	Standardized uptake value
SMV	Transarterial chemoembolization product diameters
SPD	World Health Organization
SUV	TACE
WHO	18- fluorodeoxyglucose
$\mathbf{1 8 - ~ F D G ~}$	

List of Tables

Table No.	Title	Page
2.1	Okuda staging system	19
2.2	American Joint Committee on Cancer/ TNM $7^{\text {th }}$ edition	20
3.1	Physical properties of different scintillators for positron emission tomography (PET)	30
4.1	World Health Organization (WHO) Criteria	47
4.2	Response Evaluation Criteria in Solid Tumors	48
4.3	Modified Response Evaluation Criteria in Solid Tumors (mRECIST)	49
6.1	Statistical data analysis including sex and age.	61
6.2	Statistical data analysis of hepatic segmental distribution and size of the chemo-emoblized lesions.	62
6.3	Sites of extra hepatic spread.	
6.4	Statistical data analysis of SUV max and TSUV max / L SUV max.	65
6.5	Illustrating the Diagnostic Value of FDG PET/CT and Triphasic CT in post TACE follow up.	66

List of Figures

Figures No.	Title	Page
1.1	Anatomy of the liver segments.	5
1.2	Cross sectional anatomy of the liver segments.	6
1.3	Radiographic segmental anatomy of the liver.	7
1.4	Normal hepatic arterial anatomy. Axial MIP image shows the normal anatomy of the hepatic artery. CHA common hepatic artery.	9
1.5	3D reconstruction CT angiography on upper abdominal aorta.	9
1.6	Normal portal venous Image from 3D CT portography shows the portal vein (PV) branching into the left portal vein (LPV) and right portal vein (RPV).	11
1.7	Hepatic venous confluence. Coronal MIP image from multidetector CT shows the confluence of the left hepatic vein (LHV).	12
1.8	Normal biliary tree anatomy on MRCP.	14
3.1	Uptake of FDG. FDG is a glucose analog that is taken up by metabolically active cells by means of facilitated transport via glucose transporters (Glut) in the cell membrane.	26

Figures No.	Title	Page
3.2	Annihilation reaction positrons annihilate with electrons, releasing two coincidence 511-keV photons, which are detected by scintillation crystals (blue rectangles).	28
3.3	A schematic of a current PET-CT scanner design. The dimensions of the gantry are 228 cm wide, 200 cm high and 168 cm deep.	32
3.4	Current commercial PET/CT scanners from 3 vendors.	32
3.5	Axial PET CT images showing physiological symmetrical uptake in the nasopharyngeal tonsils.	37
3.6	Symmetrical uptake is noted in the neck, supraclavicular fossa and paravertebral regions consistent with typical appearance of brown fat activity (black arrow).	40
3.7	(A) 58-y-old man with colon cancer. Lesion at dome of liver is mislocalized to right lung (arrow) because of respiratory motion (B) Image without attenuation correction shows that all lesions are confined to liver.	42

Figures No.	Title	Page
4.1	a-d Representative case of rim-shaped FDG uptake. A63-year-old women who had hepatocellular carcinoma (HCC) in segment 8 received radiofrequency ablation (RFA) treatment.	46
4.2	Different imaging response criteria used in evaluation of hepatocellular carcinoma (HCC) after treatment.	49
6.1	Pie chart demonstrates the distribution of cases in both sexes in our study.	61
6.2	Hepatic segmental location of the lesions.	63
6.3	Illustrating the Diagnostic Value of FDG PET/CT and Triphasic CT in post TACE follow up.	67

Illustrative cases

Title	Page No.
Case 1	68
Case 2	70
Case 3	72
Case 4	74
Case 5	76
Case 6	78
Case 7	80
Case 8	82
Case 9	84

Introduction

Hepatocellular carcinoma (HCC) represents the commonest primary hepatic tumor of adults. It is the $6^{\text {th }}$ most common tumor in the world and the third commonest cause of cancer related deaths (Dai et al., 2014).

Liver cancer represents about 11.85% of the malignancies of all GIT organs and 1.78% of the total malignancies among Egyptians (Holah et al., 2015).

HCC is caused by malignant transformation in hepatocytes due to chronic liver diseases resulting in cirrhosis (Tsurusaki et al., 2014).

From the selective treatment options of liver tumors, interventional procedures such as Trans arterial chemoembolization (TACE), has been widely used. The powerful cytotoxic effect of TACE by combined action of ischemia followed by chemoembolization of the tumor's feeding artery has been proved to result in therapeutic efficacy (Song et al., 2013).

Despite good results, this interventional procedure needs close monitoring to effectiveness of treatment because the rate of residual viable malignancy in tumors larger than 3 cm can reach 48\% (Tsurusaki et al., 2014).

Follow up of tumor response after TACE is important to determine whether the tumor is completely eradicated or additional treatment is required. Magnetic resonance imaging or computed tomography has been widely used for the assessment of treatment response after TACE. The determination of treatment response using size criteria, based on the Response Evaluation Criteria in Solid Tumors (RECIST), does not necessarily apply well to interventional therapy in such patients, so most radiologists have relied on the presence or absence of local contrast enhancement at the treated tumor in addition to changes in tumor size (Kim et al., 2011).

The methods which are used to detect tumor viability depend on showing arterial enhancement for reporting treatment responses. However, this concept does not adequately consider the biological activity of HCC (Song et al., 2013).

Positron Emission Tomography (PET) is a noninvasive imaging tool that uses 18- fluoro-deoxy-glucose (18- FDG) as radioactive material showing difference in metabolism between tissues thus demonstrates the functional status of suspicious lesions (Saif et al., 2010).

After interventional procedures, CT or MRI at one month are routinely performed to assess for residual tumors but there has been increasing evidence that PET can detect residual tumors earlier than CT and MRI (Tsurusaki et al., 2014).

PET/CT is a new imaging tool, whose advantages are useful in clinical oncology. The combination of anatomical and functional image has been the true evolution in diagnosis (Saif et al., 2010).

So, PET/CT can be used in the assessment of hepatocelluar biological activity as an additional predictive tool (Song et al., 2013).

Aim of the Work

The aim of this study is to emphasize the role of PET/CT in early follow up of HCC after transarterial chemoembolization in comparison to triphasic CT.

