The Role of PET CT In Comparison To Triphasic CT in Early Follow Up of Hepatocellular Carcinoma after Transarterial Chemoemoblization

Thesis

Submitted for Partial Fulfillment of the MD Degree in **Radio-Diagnosis**

By

Hany Rafat Atyia EL -Malah

M. Sc of Radiodiagnosis Faculty of Medicine- Ain Shams University

Supervised by

Prof. Dr. Mounir Sobhy Guirguis

Professor of Radiodiagnosis Faculty of Medicine- Ain Shams University

Ass. Prof. Dr. Enas Ahmed Azzab

Ass. Professor of Radiodiagnosis Faculty of Medicine- Ain Shams University

Ass. Prof. Dr. Waleed Hetta

Ass. Professor of Radiodiagnosis Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2019

- First and foremost, my deep gratefulness and indebtedness is to Allah, the Most Gracious and the Most Merciful.
- I wish to express my deep gratitude and respect to Prof. Dr. Mounir Sobhy Guirguis Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his valuable advices, continuous encouragement, judicious guidance and kind support at this study.
- I would like to express my great thanks to Ass. Prof. Dr Enas Ahmed Azzab Ass. Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her patience, sincere advice and kind support all through this study.
- Special thanks are due to Ass. Prof. Dr Waleed Hetta Ass. Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University for his sincere efforts and fruitful encouragement.
- A would also like to thank all my collegues who extended to me a helping hand for this work.
- Astly and not least, I send my deepest love to my parents, wife and my daughter Habiba for their care and ever lasting support.

🖎 Hany Rafat Atyia EL-Malah

List of Contents

Title	Page
List of Abbreviations	I
List of Tables	IV
List of Figures	V
Illustrated Cases	VIII
Introduction	1
Aim of the work	4
Review of literature	
Radiological anatomy of the liver	5
Pathological considerations	
Technique of PET CT and Triphasic CT	24
Role of PET CT and Triphasic CT in the early for	ollow up
of HCC after transarterial chemoembolization	44
Patients and methods	
Results	61
Illustrative cases	
Discussion	
Summary and conclusion	
References	
Arabic summary	

List of Abbreviation

AFP	Alpha-fetoprotein	
BGO	Bismuth germanate	
CBD	Common bile duct	
СЕСТ	Contrast enhanced computed tomography	
СНА	Common hepatic artery	
CHD	Common hepatic duct	
СТ	Computed tomography.	
СТАС	Computed tomography attenuation	
	correction	
EASL	European Association for the Study of the	
	Liver	
FDG	Fluorodeoxyglucose	
GB	Gall bladder.	
GDA	Gastroduodenal artery	
GLUT	Glucose transporter	
GSO	Gadolinium oxyorthosilicate	
НСС	Hepatocellular carcinoma	
HCV	Hepatitis C virus	
HK enzyme	Hexokinase enzyme	
IMV	Inferior mesenteric vein	
IVC	Inferior vena cava	
kBq	Kolobecquerel	

Kev	Kiloelectron volt	
Kg	Kilogram	
LGA	Left gastric artery	
LHA	Left hepatic artery	
LHV	Left hepatic vein	
LPV	Left portal vein	
LSECs	Liver sinusoidal endothelial cells	
LSO	Lutetium oxyorthosilicate	
mCi	Millicurie	
MHV	Middle hepatic vein	
MIP	Maximum intensity projection	
MPV	Main portal vein	
mDECIST	Madified Degrange Evaluation Critaria in	
IIIKECISI	Modified Response Evaluation Criteria in	
IIIKECISI	Solid Tumors	
MRI	Solid Tumors Magnetic Resonance imaging	
MRI N/C ratio	Modified Response Evaluation Criteria in Solid TumorsMagnetic Resonance imagingNuclear/cytoplasmic ratio	
MRI N/C ratio Nal	Modified Response Evaluation Criteria in Solid TumorsMagnetic Resonance imagingNuclear/cytoplasmic ratioSodium iodide	
MRI N/C ratio Nal NASH	Modified Response Evaluation Criteria in Solid TumorsMagnetic Resonance imagingNuclear/cytoplasmic ratioSodium iodideNonalcoholic steatohepatitis	
MRI N/C ratio Nal NASH PET	Modified Response Evaluation Criteria in Solid TumorsMagnetic Resonance imagingNuclear/cytoplasmic ratioSodium iodideNonalcoholic steatohepatitisPositron Emission Tomography	
MRI N/C ratio Nal NASH PET PMT	Modified Response Evaluation Criteria in Solid TumorsMagnetic Resonance imagingNuclear/cytoplasmic ratioSodium iodideNonalcoholic steatohepatitisPositron Emission TomographyPhotomultiplier tube	
MRI N/C ratio Nal NASH PET PMT PV	Modified Response Evaluation Criteria in Solid TumorsMagnetic Resonance imagingNuclear/cytoplasmic ratioSodium iodideNonalcoholic steatohepatitisPositron Emission TomographyPhotomultiplier tubePortal vein	
MRI N/C ratio Nal NASH PET PMT PV PVTT	Modified Response Evaluation Criteria in Solid Tumors Magnetic Resonance imaging Nuclear/cytoplasmic ratio Sodium iodide Nonalcoholic steatohepatitis Positron Emission Tomography Photomultiplier tube Portal vein Portal vein tumoral thrombosis	
MRI N/C ratio Nal NASH PET PMT PV PVTT RAPV	Modified Response Evaluation Criteria in Solid Tumors Magnetic Resonance imaging Nuclear/cytoplasmic ratio Sodium iodide Nonalcoholic steatohepatitis Positron Emission Tomography Photomultiplier tube Portal vein Portal vein tumoral thrombosis Right anterior portal vein	

	Tumors	
RFA	Radiofrequency ablation	
RHA	Right hepatic artery	
ROI	Region of interest	
RPPV	Right posterior portal vein	
RPV	Right portal vein	
RRA	Right renal artery.	
SA	Splenic artery	
SMA	Superior mesenteric artery	
SMV	Superior mesenteric vein	
SPD	Sum of the product diameters	
SUV	Standardized uptake value	
TACE	Transarterial chemoembolization	
WHO	World Health Organization	
18- FDG	18- fluorodeoxyglucose	

List of Tables

Table No	Title	Page	
INO.			
2.1	Okuda staging system	19	
2.2	American Joint Committee on Cancer/ TNM		
	7 th edition		
3.1	Physical properties of different scintillators	30	
	for positron emission tomography (PET)		
4.1	World Health Organization (WHO) Criteria	47	
4.2	Response Evaluation Criteria in Solid	48	
	Tumors		
4.3	Modified Response Evaluation Criteria in	49	
	Solid Tumors (mRECIST)		
6.1	Statistical data analysis including sex and	61	
	age.		
6.2	Statistical data analysis of hepatic segmental 62		
	distribution and size of the		
	chemo-emoblized lesions.		
6.3	Sites of extra hepatic spread.	65	
6.4	Statistical data analysis of SUV max and	65	
	TSUV max / L SUV max.		
6.5	Illustrating the Diagnostic Value of FDG	66	
	PET/CT and Triphasic CT in post TACE		
	follow up.		

List of Figures

Figures	Title		
No.			
1.1	Anatomy of the liver segments.	5	
1.2	Cross sectional anatomy of the liver	6	
	segments.	0	
1.3	Radiographic segmental anatomy of the		
	liver.	/	
1.4	Normal hepatic arterial anatomy. Axial		
	MIP image shows the normal anatomy of	0	
	the hepatic artery. CHA common hepatic	9	
	artery.		
1.5	3D reconstruction CT angiography on	0	
	upper abdominal aorta.	9	
1.6	Normal portal venous Image from 3D CT	11	
	portography shows the portal vein (PV)		
	branching into the left portal vein (LPV)		
	and right portal vein (RPV).		
1.7	Hepatic venous confluence. Coronal MIP	12	
	image from multidetector CT shows the		
	confluence of the left hepatic vein (LHV).		
1.8	Normal biliary tree anatomy on MRCP.	14	
3.1	Uptake of FDG. FDG is a glucose analog	26	
	that is taken up by metabolically active		
	cells by means of facilitated transport via		
	glucose transporters (Glut) in the cell		
	membrane.		

Figures No.	Title	Page
3.2	Annihilation reaction positrons annihilate	28
	with electrons, releasing two coincidence	
	511-keV photons, which are detected by	
	scintillation crystals (blue rectangles).	
3.3	A schematic of a current PET-CT scanner	32
	design. The dimensions of the gantry are	
	228 cm wide, 200 cm high and 168 cm	
	deep.	
3.4	Current commercial PET/CT scanners	32
	from 3 vendors.	
3.5	Axial PET CT images showing	37
	physiological symmetrical uptake in the	
	nasopharyngeal tonsils.	
3.6	Symmetrical uptake is noted in the neck,	40
	supraclavicular fossa and paravertebral	
	regions consistent with typical appearance	
	of brown fat activity (black arrow).	
3.7	(A) 58-y-old man with colon cancer.	42
	Lesion at dome of liver is mislocalized to	
	right lung (arrow) because of respiratory	
	motion (B) Image without attenuation	
	correction shows that all lesions are	
	confined to liver.	

Figures No.	Title	Page
4.1	a-d Representative case of rim-shaped	46
	FDG uptake. A63-year-old women who	
	had hepatocellular carcinoma (HCC) in	
	segment 8 received radiofrequency	
	ablation (RFA) treatment.	
4.2	Different imaging response criteria used in	49
	evaluation of hepatocellular carcinoma	
	(HCC) after treatment.	
6.1	Pie chart demonstrates the distribution of	61
	cases in both sexes in our study.	
6.2	Hepatic segmental location of the lesions.	63
6.3	Illustrating the Diagnostic Value of FDG	67
	PET/CT and Triphasic CT in post TACE	
	follow up.	

Illustrative cases

Title	Page No.
Case 1	68
Case 2	70
Case 3	72
Case 4	74
Case 5	76
Case 6	78
Case 7	80
Case 8	82
Case 9	84

Introduction

Hepatocellular carcinoma (HCC) represents the commonest primary hepatic tumor of adults. It is the 6^{th} most common tumor in the world and the third commonest cause of cancer related deaths (*Dai et al., 2014*).

Liver cancer represents about 11.85% of the malignancies of all GIT organs and 1.78% of the total malignancies among Egyptians (*Holah et al., 2015*).

HCC is caused by malignant transformation in hepatocytes due to chronic liver diseases resulting in cirrhosis (*Tsurusaki et al., 2014*).

From the selective treatment options of liver tumors, interventional procedures such as Trans arterial chemoembolization (TACE), has been widely used. The powerful cytotoxic effect of TACE by combined action of ischemia followed by chemoembolization of the tumor's feeding artery has been proved to result in therapeutic efficacy (*Song et al., 2013*).

Despite good results, this interventional procedure needs close monitoring to effectiveness of treatment because the rate of residual viable malignancy in tumors larger than 3 cm can reach 48% (*Tsurusaki et al., 2014*).

¹

Follow up of tumor response after TACE is important to determine whether the tumor is completely eradicated or additional treatment is required. Magnetic resonance imaging or computed tomography has been widely used for the assessment of treatment response after TACE. The determination of treatment response using size criteria, based on the Response Evaluation Criteria in Solid Tumors (RECIST), does not necessarily apply well to interventional therapy in such patients, so most radiologists have relied on the presence or absence of local contrast enhancement at the treated tumor in addition to changes in tumor size (*Kim et al.*, 2011).

The methods which are used to detect tumor viability depend on showing arterial enhancement for reporting treatment responses. However, this concept does not adequately consider the biological activity of HCC (*Song et al., 2013*).

Positron Emission Tomography (PET) is a noninvasive imaging tool that uses 18- fluoro-deoxy-glucose (18- FDG) as radioactive material showing difference in metabolism between tissues thus demonstrates the functional status of suspicious lesions (*Saif et al., 2010*).

2

After interventional procedures, CT or MRI at one month are routinely performed to assess for residual tumors but there has been increasing evidence that PET can detect residual tumors earlier than CT and MRI (*Tsurusaki et al.*, 2014).

PET/CT is a new imaging tool, whose advantages are useful in clinical oncology. The combination of anatomical and functional image has been the true evolution in diagnosis (*Saif et al., 2010*).

So, PET/CT can be used in the assessment of hepatocelluar biological activity as an additional predictive tool (*Song et al., 2013*).

Aim of the Work

The aim of this study is to emphasize the role of PET/CT in early follow up of HCC after transarterial chemoembolization in comparison to triphasic CT.