Evaluating Crestal Bone Height In Implant Retained Mandibular Overdenture Using Cad/Cam Milled Cobalt Chromium Bar Versus Zirconia Bar

ଚ୍ଚାର THESIS ଭଉ

Submitted to Prosthodontic Department Faculty of Dentistry, Ain Shams University, for Partial Fulfillment of the Requirements for the Doctor Degree in Oral and Maxillofacial Prosthodontics

BY

Sherin Samir Matta

B.D.S. (Cairo University, 1993)M.D.S. (Cairo University, 2014)

Faculty of Dentistry Ain Shams University

2020

ଚ୍ଚାର SUPERVISORS ଜନ୍ୟ

Prof. Dr. Marwa Ezzat Sabet

Chairman of Prosthodontic Department

Faculty of Dentistry

Ain Shams University

Assoc. Prof. Dr. Ahmed Mohamed Osama

Associate Professor of Prosthodontics Faculty of Dentistry Ain Shams University

Assoc. Prof. DR. Hebatullah Tarek Mahmoud

Associate Professor of Prosthodontics Faculty of Dentistry Ain-Shams University

Assoc. Prof. Dr. Samer Mostafa Ali

Associate Professor Chairman of Removable Prosthodontics

Faculty of Dentistry Modern science and Arts University

ERECREDA Acknowledgment

First of all I would like to thank God Almighty for His abundant grace and blessings without which this study would have not been possible.

I would like to express my deepest gratitude and appreciation to **Prof. Dr. Marwa Ezzat Sabet.**Chairman of Prosthodontic department, Faculty of Dentistry, Ain Shams University for her support, encouragement, supervision and valuable guidance through the whole study.

My sincere thanks and appreciation to Assoc. Prof. Dr. Ahmed Mohamed Osama Associate professor of Prosthodontics, Faculty of Dentistry, Ain Shams University. For his constant help, valuable advice, and ongoing support and encouragement during the course of this study.

I am extremely grateful to Assoc. Prof. DR. Heba Allah Tarek Mahmoud Associate professor of Prosthodontics, Faculty of Dentistry, Ain Shams University. Her wisdom, knowledge and commitment to the highest standards of excellence inspired me.

I would like to express my deepest gratitude and thanks to Assoc. Prof. Dr. Samer Mostafa Ali Associate professor and chairman of removable prosthodontics Faculty of Dentistry Modern science and Arts University for supporting me throughout this thesis with his patience ,knowledge and excreting every effort to help me.

Last but not least, I would like to thank all staff members of Prosthodontic Department, Faculty of Dentistry, Ain Shams University for their constant care, support, encouragement and assistance.

Sherin Samir Matta

SCA SCA SCA

& Dedication R

Dedicated to the memory of my father, you are gone but your belief in me has made this journey possible.

To my precious mother and to my family and friends for all your encouragement and support.

List of Contents

Item	Page
List of tables	vii
List of figures	ix
Introduction	1
Literature Review	3
Problems of edentulism	3
Prosthetic management for edentulous patient	6
1) Complete denture	6
2) Overdenture	6
Classifications of overdentures	7
I.Tooth supported Overdenture	7
3) Totally tooth supported overdenture	7
4) Mucosa-Tooth supported overdenture	7
II. Implant supported Overdenture	7
Totally implant supported overdenture	8
Implant-mucosa supported overdenture	8
Mucosa supported implant overdenture	8
3) Dental Implants	9
Types of endosseous implants according to their design	9
Blade form endosteal implant	10
Root form implants	10

Item		Page
Types	of endosseous implants according to their material	10
(i) Tita	nium and its alloys	10
(ii) Zir	rconia	10
Types charac	of endosseous implants according to surface teristics	11
a)	Sand blasted and acid etched surface	11
b)	Titanium Plasma Sprayed surface (TPS)	11
c)	Titanium oxide surface	11
d)	Hydroxyapetite coating	12
Types technic	of endosseous implants according to the insertion que	12
a)	Press fit technique	12
b)	Self tapping technique	12
c)	Pre-tapping technique	12
Types stages	of endosseous implants according to surgical	12
a)	Single stage design (none submerged - transgingival)	12
b)	Two stage design	13
Types installa	of endosseuos implants according to the time of ation	13
a)	Immediate implants	13
b)	Immediate delayed implants	13
c)	Delayed implants	13

Item	Page
Types of endosseous implants according to time of prosthetic loading	13
ai] Immediately loaded implants	13
aii) Delayed loading implant	13
Biocompatibility	14
Tissue and dental implant interactions	14
4) Attachments	15
i] Stud attachments	16
O-rings attachment	17
Era attachment	17
ii]Ball attachment	17
iii]Locator attachment	18
iv] Magnet attachment	19
v] Bar Attachment	19
Bars are classified according to resiliency into	19
 Bar Joints 	19
[a] Single sleeve bar joints	20
[b] Multiple sleeve bar joints	20
 Bar Units 	20
Bars are classified according to retention mechanism into	20
(a) Bar with stud attachment	20
(b) Bar with clip attachments	21

Item	Page
Bars are classified according to the method of fixation to the implants into	21
[a]Screw retained bars	21
[b] Cement retained bars	21
Bars are classified according to method of fabrication into	22
[A] Prefabricated bars	22
[B] Customized bars	22
(Bi) Casted bars	22
(Bii) MAD/MAM milled bars	22
(Biii) CAD/CAM milled bars	23
Bars are classified according to material into	24
(1) Titanium	24
(2) Chobalt Chromium	26
(3) Peek	27
(4) zirconia	28
CAD/CAM	36
A) Scanner	37
B) Design Software	38
C) Processing Device	38
Subtractive manufacturing	39
Additive manufacturing	40

Item	Page
• Stereolithography (SLA)	40
• Selective laser sintering (SLS)	40
• Fused deposition modelling (FDM)	40
• Direct metal laser sintering (DMLS)	41
• Polyjet 3D printing (PJP)	41
• Inkjet 3D printing (IJP)	41
Laminated Object Manufacturing (LOM)	41
• Colour-Jet-Printing (CJP)	41
• Electron Beam Melting (EBM)	42
• Multi-Jet-Printing (MJP)	42
Surgical Guides	43
I. According to support:	44
1. Tooth supported guide	44
2. Mucosa supported guide	44
3. Bone supported guide	44
II. According to design:	45
1] Nonlimiting Design	45
2] Partially Limiting Design	45
3] Completely Limiting Design	46
CAD/CAM -based surgical guides	46
Cone beam CT(CBCT)	47

Item	Page
Aim of study	52
Materials and methods	53
Results	72
Discussion	84
Discussion of methodogy	84
Discussion of results	90
Summary	94
Conclusion	96
References	97
Arabic summary	136

List of Tables

Table	Page
<i>Table (I):</i> Mean standard deviation p value of ANOVA test for crestal bone changes around Zirconia bar	72
<i>Table (II):</i> Mean standard deviation p value of ANOVA test for crestal bone changes around Cobalt Chromium bar	75
<i>Table (III):</i> Mean difference standard deviation and p value for the comparison between Group A: Zirconia Bar and Group B: Cobalt Chromium bar according to overall mean difference crestal bone loss at 0 months and after 3 months	78
<i>Table (IV):</i> Mean difference standard deviation and p value for the comparison between Group A: Zirconia Bar and Group B: Cobalt Chromium bar according to overall mean difference crestal bone loss at 3 months and after 6 months	79
<i>Table (V):</i> Mean difference standard deviation and p value for the comparison between Group A: Zirconia Bar and Group B: Cobalt Chromium bar according to overall mean difference crestal bone loss at 6 months and after 9 months.	80
<i>Table (VI):</i> Mean difference standard deviation and p value for the comparison between Group A: Zirconia Bar and Group B: Cobalt Chromium bar according to overall mean difference crestal bone loss at 9 months and after 12 months.	81
<i>Table (VII):</i> Mean difference standard deviation and p value for the comparison between Group A: Zirconia Bar and Group B: Cobalt Chromium bar according to overall mean difference crestal bone loss at 0 months and after 12 months	83