ASSESSMENT OF TELOMERE LENGTH BY Q-FISH AND THE EFFECT OF RESVERATROL ON TELOMERE STABILITY IN PREMATURE AGING SYNDROMES

Submitted By

Peter Safwat Fahmy Erian

M.B.B.Ch., Faculty of Medicine, Cairo University, 2003 Master in Clinical & Chemical Pathology, Faculty of Medicine, Cairo University, 2013

A Thesis Submitted in Partial Fulfillment Of The Requirement for the Doctor of Philosophy Degree In Environmental Sciences

Department of Environmental Medical Sciences Institute of Environmental Studies and Research Ain Shams University

2020

APPROVAL SHEET

ASSESSMENT OF TELOMERE LENGTH BY Q-FISH AND THE EFFECT OF RESVERATROL ON TELOMERE STABILITY IN PREMATURE AGING SYNDROMES Submitted By

Peter Safwat Fahmy Erian

M.B.B.Ch., Faculty of Medicine, Cairo University, 2003 Master in Clinical & Chemical Pathology, Faculty of Medicine, Cairo University, 2013

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences

Department of Environmental Medical Sciences

This thesis was discussed and approved by:

The Committee

Signature

1-Prof. Dr. Mostafa Hassan Ragab

Prof. of Community Medicine and Environment, Department of Environmental Medical Sciences

Institute of Environmental Studies & Research

Ain Shams University

2-Prof. Dr. Amal Mahmoud Mohamed

Prof. of Human Cytogenetics National Research Center

3-Prof. Dr. Alaa Khalil Kamel

Prof. of Human Cytogenetics National Research Center

4-Prof. Dr. Mohamed Salah El-Din Mostafa

Prof. of Public Health Faculty of Postgraduate of Childhood Studies Ain Shams University

2020

ASSESSMENT OF TELOMERE LENGTH BY Q-FISH AND THE EFFECT OF RESVERATROL ON TELOMERE STABILITY IN PREMATURE AGING SYNDROMES

Submitted By

Peter Safwat Fahmy Erian

M.B.B.Ch., Faculty of Medicine, Cairo University, 2003 Master in Clinical & Chemical Pathology, Faculty of Medicine, Cairo University, 2013

A Thesis Submitted in Partial Fulfillment Of

The Requirement for the Doctor of Philosophy Degree In

111

Environmental Sciences Department of Environmental Medical Sciences

Under The Supervision of:

1-Prof. Dr. Mostafa Hassan Ragab

Prof. of Community Medicine and Environment, Department of Environmental Medical Sciences Institute of Environmental Studies & Research Ain Shams University

2-Prof. Dr. Amal Mahmoud Mohamed

Prof. of Human Cytogenetics National Research Center

2020

Acknowledgement

All gratitude goes in the first place to GOD, who has ever helped and guided me.

I would like to express my deepest appreciation and profound gratitude to *Prof. Dr. Mostafa Ragab*, Professor of community, occupational and environmental medicine, Institute of environmental studies and research, Ain Shams University, who devoted his time and efforts to this work.

I am greatly indebted to *Prof. Dr. Amal Mahmoud*, Professor of human cytogenetics, National research centre, for her valuable advice, and for her kind help and constant encouragement in every step all through this work.

I would like to express my sincere thanks to *Prof. Dr. Maha Eid*, Professor of human cytogenetics, National research centre, for her expert kind supervision and ultimate support during the establishment of the techniques, helping in solving every challenge faced me through this work. And also *Prof. Dr. Ghada El-Kamah* for her continuous help during the patients selection, diagnosis and clinical data correlation.

I am also thankful to my parents (May God rest their souls in peace), my beloved wife and daughters, all staff members and all my colleagues in the human cytogenetics department, National research centre, for their help and support.

Peter Safwat Fahmy

Title	Page
Acknowledgement	Ι
List of Content	II
List of Tables	III
List of Figures	IV
List of Abbreviation	VI
Abstract	VIII
Introduction	1
Aim of the work	7
Review of literature	9
Genetic background of aging	11
Oxidative stress and aging	21
Progeria and progeroid syndromes	32
Subjects & methods	46
Results	61
Discussion	86
Summary	100
Conclusion & Recommendations	104
References	107
Arabic summary	116

Contents

List of Tables

Table Number	Title	Page
1	The sex ratio among the studied patients	63
2	Frequency of clinical diagnosis among the studied patients	64
3	Clinical description, Micronucleus assay and Telomere length of group 1 patients (Fanconi anemia)	67
4	Clinical description, Micronucleus assay and Telomere length of group 2 patients (Non-Fanconi anemia)	69
5	Clinical description of the studied patients in Group 1	70
6	Clinical description of the studied patients in Group 2	70
7	Level of micronuclei in the patients' groups compared to the control group	74
8	Telomere/Centromere (T/C) value and Telomere length of the patients' groups compared to the control group	76

List of figures

Figure Number	Title	Page
1	Telomeres are located at the very final ends of the linear chromosomes and consists of TTAGGG repeats	13
2	Schematic representation of the telomere shelterin complex and its associated proteins.	
3	Main endogenous triggers of ROS and consequences of their interaction with antioxidant systems.	
4	The role of DNA damage in carcinogenesis and aging.	33
5	Measuring the head circumference using non elastic tape	50
6	Measuring the height (Stature).	51
7	Laminar flow for blood lymphocytes culture under aseptic conditions	52
8	Thermobrite for denaturation of DNA and probes	55
9	Automated Zeiss microscope with automated filter 9 wheel and ISIS software	
10	Pie Chart showing the percentage of Fanconi anemia patients versus non-Fanconi anemia patients	64
11	Metaphase spread showing multiple breaks and the triradial configuration which is diagnostic for Fanconi anemia	71
12	Metaphase spread showing multiple breaks which is diagnostic of Fanconi anemia	72
13	One micronucleus in a binucleated cell and one binucleated cell without micronuclei.	74
14	Karyotype by Q-FISH technique showing green fluorescent signals of chromosome 2 centromere and all telomeres in a patient with Fanconi anemia	78
15	Karyotype by Q-FISH technique showing the green fluorescent signals of chromosome 2 centromere and all telomeres in a patient with Xeroderma pigmentosa	79

16	Karyotype by Q-FISH technique showing the green fluorescent signals of chromosome 2 centromere and all telomeres in a control case	80
17	The T/C values for each chromosome short and long arms calculated by the ISIS software for a patient with Xeroderma pigmentosa	81
18	The T/C values for each chromosome short and long arms calculated by the ISIS software for a control case	81
19	Regression analysis of the two groups of patients, showing the relation between the number of MNi and the telomere length in Kb	82
20	Regression analysis of patients in group 1, showing the relation between telomere length in Kb and number of clinical abnormalities	84
21	Regression analysis of patients in group 1, showing the relation between the telomere length in Kb and hemoglobin level (gm/dl)	85
22	Regression analysis of patients in group 1, showing the relation between telomere length in Kb and platelets count	85

List of Abbreviations

ATM	Ataxia-Telangectasia mutated gene
BER	Base excision repair
BM	Bone marrow
BN	Binucleated cells
СА	Comet assay
CAT	Catalse enzyme
CBMNA	Cytokinesis-block micronucleus assay
DC	Dyskeratosis congenita
DEB	Diepoxybutane (1,3-Butadiene diepoxide)
DDR	DNA damage response
DDT	Dichloro-diphenyl-trichloroethane
DSB	Double-strand breaks
DSBR	Double strand break repair
FA	Fanconi anemia
FISH	Fluorescence in situ hybridization
GPx	Se-dependant glutathione peroxidase enzyme
GR	Glutathione reductase enzyme
HGPS	Hutchinson-Gilford progeria syndrome
hTERC	Human telomerase RNA protein
hTERT	Human telomerase reverse transcriptase protein
LTL	Leukocyte telomere length
MGE	Microgel electrophoresis
MN	Micronucleus assay
MNi	Micronuclei
NBUDs	Nuclear buds

NER	Nucleotide excision repair
NPBs	Nucleoplasmic bridges
PARP	Poly (ADP-ribose) polymerase protein
PAS	Premature aging syndromes
PCR	Polymerase chain reaction
PIBIDS	Photosensitivity, Ichthyosis, Brittle hair, Intellectual impairment, Decreased fertility and Short stature syndrome
PMNCs	Peripheral blood mononuclear cells
POT1	Protection of telomeres 1 protein
_	-
Q-FISH	Quantitative Fluorescence in situ hybridization
Rap1	Repressor activator protein 1
RNP	Reverse transcriptase ribonucleoprotein
ROS	Reactive oxygen species
SCGE	Single cell electrophoresis
SOD	Superoxide dismutase enzyme
T/C	Telomere/Centromere
TERT	Telomerase reverse transcriptase
TIN2	TRF1-interacting protein 2
TPP1	Tripeptidyl peptidase 1 protein
TRF	Telomerase restriction fragment analysis
TRF1	Telomere repeat binding factor 1 protein
TRF2	Telomere repeat binding factor 2 protein
TTD	Trichothiodystrophy
WES	Whole exome sequencing
WS	Werner syndrome
XP	Xeroderma pigmentosa

ABSTRACT

Background: Premature aging syndromes are associated with telomere shortening originated from defective telomerase function or mutations in the DNA repair system, which in turn can increase the susceptibility for malignant tumors.

Aim: This study aims to assess the effect of Resveratrol - which is a natural extract - on the stability of chromosomes in premature aging syndromes patients using in vitro micronucleus assay as a parameter of improvement, and to assess the telomere length by Q-FISH technique in premature aging syndromes.

Methods: The present study was conducted on 27 patients and 10 normal controls matching in age and sex. Induction of breakage by 1,3-Butadiene diepoxide, evaluation of the antioxidant effect of Resveratrol on genomic stability were done using in vitro micronucleus assay technique and assessment of telomere length by Q-FISH.

Results: The proper dose of Resveratrol was adjusted in vitro, and significant reduction in the level of micronuclei in cultures treated with Resveratrol was found. Q-FISH was a powerful diagnostic method for the measurement of telomere length, and it helped us to evaluate the relation between the severity of the patients' phenotype and the mean telomere length of each patient.

Conclusion: This study recommended the use of in vitro micronucleus assay and Q-FISH techniques as prognostic markers for the severity of the disease. Further clinical assessments and adjustment of the dose of Resveratrol is needed to ensure its safety if used as an adjuvant therapy.

Keywords: Resveratrol - Micronuclei - Fanconi anemia - Genomic stability - Premature aging syndromes - Q-FISH.

INTRODUCTION

_

INTRODUCTION

Aging is a natural process characterized by a progressive functional decline of tissues, organs and organ systems, which leads to an increased susceptibility to age-related diseases and, ultimately, to death. A persistently DNA damage response (DDR), known as "cellular senescence", is one of the main contributing factors to age associated tissue dysfunction, reduced regenerative capacity and age-related diseases (**Boccardi et al., 2015**).

Telomeres are the physical ends of eukaryotic linear chromosomes. Telomeres form special structures that cap chromosome ends to prevent degradation by nucleolytic attack and to protect chromosome termini from DNA double-strand breaks (**Fajkus et al., 2005**).

Telomeres are important for replication of the chromosomes during cell division in reproducible cells as skin, blood, bone and many other kinds of cells. Telomeres also play an important protective role in our cells, as their presence prevents important genetic material from being lost during cell division. Telomeres serve as caps on the ends of chromosomes, protecting chromosome ends from breakage; as broken chromosomes trigger unwanted biological responses (**Diotti & Loayza, 2012**).

In proliferative cells and unicellular organisms, telomeric DNA is replicated by the actions of telomerase, a specialized reverse transcriptase ribonucleoprotein (RNP) composed of two main components, a telomerase reverse transcriptase (TERT) protein and a noncoding RNA component (TER, telomerase RNA), which form an integral and essential part of the enzyme (Gilson & Geli, 2007; Prasad et al., 2017). In the absence of telomerase, some cells employ a recombination-based DNA replication pathway known as alternative lengthening of telomeres. However, mammalian somatic cells that naturally lack telomerase activity show telomere shortening with increasing age leading to cell cycle arrest and senescence. In another way, mutations or deletions of telomerase components can lead to inherited genetic disorders. Also, the depletion of telomeric proteins can elicit the action of distinct kinases-dependent DNA damage response, culminating in chromosomal abnormalities that are incompatible with life. In addition to the intricate network formed by the interrelationships among telomeric proteins, long noncoding RNAs that arise from subtelomeric regions, named telomeric repeat-containing RNA, are also implicated in telomerase regulation and telomere maintenance (Cesare & Reddel, 2010).

Telomerase is extensively important in the maintenance of genome integrity. Therefore, telomerase dysfunction may result in defects in various highly proliferative cells or tissues, and, ultimately leading to aging-related degenerative diseases. (**Prasad** et al., 2017)

In humans, the average telomere length typically ranges from 10 to 15 kb. Telomeric DNA inevitably shortens upon each cell replication at a rate of 50-200 bp (**Zhao et al., 2009**). When telomeres become critically short, a cellular response is triggered, signaling cells to exit the cell cycle and to senesce. This process indicates that the cells have reached their maximum proliferation capacity, known as the Hayflick limit (Hayflick, 1965). Few cells escape this natural crisis and loss critical cell cycle checkpoints and components of the DNA damage repair machinery. These cells that bypassed the crisis are now considered immortalized with and emerge multiple chromosomal abnormalities and mutations. Some of these cells bear mutations in genes responsible for inducing tumorigenesis, making them prone to promote cancer formation (Kong et al., 2013).

Recent reports showed that telomere shortening is a potential contributor to the pathogenesis of many premature aging syndromes as dyskeratosis congenita, Werner syndrome, Bloom syndrome, ataxia telangiectasia, Nijmegen breakage syndrome, Fanconi anemia, Aplastic anemia and idiopathic pulmonary fibrosis. A common hallmark of these diseases is that patients have critically short telomeres compared with healthy individuals of the same sex and age (**Boccardi et al., 2015**).

Different methods had been adopted to measure telomere length, among these methods is the Quantitative fluorescence in situ hybridization (Q-FISH) technique. Q-FISH is based on the use of the peptide nucleic acid (PNA) telomere oligonucleotides probes and appropriate digital image analysis system designed to quantify fluorescence signals. The advantages of Q-FISH include: measuring the individual length of all telomeres in a given genome,