

Assessment of Tear Meniscus Changes Before and After Dacryocystorhinostomy Using Anterior Segment Optical Coherence Tomography

Thesis

Submitted for Partial Fulfillment of Master Degree in Ophthalmology

> By Ann Wadie Habeeb

M. B. B. Ch. Faculty of Medicine, Ain Shams University

Under supervision of

Prof. Dr. Dina Ezzat Abdel Aziz Mansour

Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Dr. Ashraf Abdelsalam Shaat

Lecturer of Ophthalmology Faculty of Medicine - Ain Shams University

Dr. Radwa Mohammed Nabil

Lecturer of Ophthalmology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2020

First and foremost, I feel always indebted to 900, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Dina Ezzat Abdel Aziz Mansour,** Professor of Ophthalmology Faculty of Medicine -Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Ashraf Abdelsalam Shaat**, Lecturer of Ophthalmology Faculty of Medicine - Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Radwa Mohammed Mabil**, Lecturer of Ophthalmology Faculty of Medicine - Ain Shams University, for her great help, active participation and guidance.

Ann Wadie

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	4
Review of Literature	
Anatomy of the Lacrimal System	5
Physiology of the Lacrimal System and Tear I	Film13
Acquired Nasolacrimal Duct Obstruction	18
Dacryocystorhinostomy	
Anterior Segment OCT	42
Patients and Methods	44
Results	50
Discussion	58
Conclusion	61
Summary	62
References	64
Arabic Summary	—

List of Tables

Table No	. Title	Page No.
Table (1):	Distribution of subjects according to ages and sex	o their eyes, 50
Table (2):	Descriptive data regarding Preoper TMA, TMV of the studied patients	ative TMH, 51
Table (3):	TMH in mm preoperative and period among the studied patients	ostoperative 52
Table (4):	TMA in mm ² preoperative and period among the studied patients.	ostoperative 53
Table (5):	TMV in mm ³ preoperative and pe among the studied patients	ostoperative 54
Table (6):	Correlation between age and study p	arameters55

List of Figures

Fig.	No.	Title	Page No.
Figu Figu	ure (1): ure (2):	The two main parts of the lacrimal gla Sympathetic and parasym innervations to the lacrimal gland	nd6 1pathetic 7
Figu	ıre (3):	Approximate dimensions of the excretory system	lacrimal 8
Figu	ıre (4):	Relationship of the medial canthal to the lacrimal sac	endon to 10
Figu	ıre (5):	Anatomic dissection of the lacrimal of system within the bony wall betwo nasal cavity and maxillary sinus	lrainage een the 11
Figu	ıre (6):	Positions of valve of Rosenmuller an of Hasner along the lacrimal system.	nd valve 12
Figu	ıre (7):	Position of tear film	
Figu	ıre (8):	The 3 layers of the tear film (lipi water layer and mucin layer)	d layer, 17
Figu	ıre (9):	Delayed dye disappearance in left eye	e21
Figu	re (10):	Jones I and Jones II tests	23
Figu	re (11):	A plain X-ray DCG	25
Figu	ıre (12):	MRI anatomy of the lacrimal p coronal plane (a, b) and sagittal (c)	oathway, 26
Figu	ıre (13):	Dacryoscintillography showing norm versus nasolacrimal duct blockage	nal flow 27
Figu	re (14):	A typical curvilinear incision	
Figu	ıre (15):	Sac dissected laterally to expose t lacrimal fossa	he bony 31
Figu	ıre (16):	Kerrison punch being used to create osteum.	e a bony 32
Figu	re (17):	Lacrimal sac incision	

List of Figures Cont ...

Fig. No.	Title	Page No.
Figure (18):	Raising a large nasal mucosal flap	
Figure (19):	Taut flap anastomosis	
Figure (20):	Intubation: upper canaliculi intubated	d34
Figure (21):	Sutured surgical wound	35
Figure (22):	Infiltration of the projection zone lacrimal area.	of the 37
Figure (23):	Mucosal incision.	
Figure (24):	Intraoperative view: the mucosal incis	sion 38
Figure (25):	Lacrimal bone drilling	
Figure (26):	Lacrimal sac incision	40
Figure (27):	Intraoperative view. Lacrimal sac ope	ning 40
Figure (28):	AS-OCT images of a patient with	PANDO
	before (A) and after surgery at 3 months LTM became significantly lower after su	s (B), the rgery48
Figure (29):	Shows the highly significant decree TMH in postoperative compar- preoperative values.	ease in red to 52
Figure (30):	Shows the highly significant decre	ease in
	TMA in postoperative compar	red to
E ¹	Share the highly similared does	
Figure (31):	TMV in postoperative compar	ease In
	preoperative values.	54 EU
Figure (32):	Positive correlation between age an	d lower
	eyelid length.	
Figure (33)	Negative correlation between ag difference in TMA.	ge and 56
Figure (34):	Negative correlation between ag difference in TMV.	ge and

List of Abbreviations

Abb.	Full term
ASOCT	Anterior segment optical coherence
	tomography
CT	Computed tomography
DCG	Dacryocystography
DCR	Dacryocystorhinostomy
DS-DCG	Digital subtraction dacryocystography
ex-DCR	External dacryocystorhinostomy
IM	Inferior meatus
LCT	Lateral canthal tendon
LTM	Lower tear meniscus
LTMV	Lower tear meniscus volume
МСТ-а	Medial canthal tendonanterior limb
МСТ-р	Medial canthal tendonposterior limb
MRI	Magnetic resonance imaging
MS	Maxillary sinus
NLD	Nasolacrimal duct
NLDO	.Nasolacrimal duct obstruction
NLS	Nasolacrimal sac
NS	Nasal septum
ОСТ	Optical coherence tomography
PANDO	Primary acquired nasolacrimal duct
	obstruction
TM	Tear meniscus
ТМА	Tear meniscus area
TMH	Tear meniscus height
TMV	Tear meniscus volume

INTRODUCTION

The lacrimal system is essentially a system of fluid pools and channels connecting them. It is responsible for secretion and drainage of tears.^[1]

The causes of tearing can be classified into one of three main categories: hypersecretion, lacrimal pump failure, and lacrimal drainage obstruction. Each main category has its own subcategories. Lacrimal secretion and drainage imbalance can lead to accumulation of too much lacrimal fluid in the lacrimal pools resulting in bothersome symptoms.^[1]

Hypersecretion may be primary or reflex. The etiology of primary hypersecretion is unknown at this time. It can be associated with eating, the so called, 'crocodile-tears syndrome.'' Also known as gustatory hyperlacrimation, ^[2–4]. Reflex hypersecretion is more common than primary hypersecretion, and is usually found in response to ocular surface irritation. Common causes include trichiasis, superficial foreign bodies, eyelid malpositions, eyelid margin disease, and trigeminal nerve irritation ^[1].

Lacrimal pump failure from a number of causes including punctal or eyelid ectropion, orbicularis oculi weakness, and facial nerve palsy may fail to push the tears to the drainage system ^[1].

1

Lacrimal drainage obstruction includes upper system obstructions, such as punctal or canalicular obstruction and stenosis that lead to a lack of flow from the eye pool to the lacrimal sac pool. It also includes lower lacrimal drainage obstructions, such as nasolacrimal duct obstruction, in which the fluid cannot move from the sac pool to the nasal pool. Last, obstructions within the lacrimal sac itself such as tumors or dacryoliths are possible. ^[5]

Acquired nasolacrimal duct obstruction is most commonly idiopathic (primary acquired NLDO), other causes may include naso-orbital trauma, sinus surgeries, granulomatous diseases such as Wegner granulomatosis and sarcoidosis or infiltration by nasopharyngeal tumors (secondary NLDO).^[1]

In treatment for obstruction of the lacrimal drainage system, tear meniscus (TM) is one of the most important clinical indices for therapeutic evaluation, which can be assessed with slit-lamp examination and fluorescein dye disappearance test as a semi quantitative measurement. However, it is obvious that all lacrimal functions are not of the same flow, and more sophisticated tests are needed to quantitate lacrimal function. ^[6]

Recently, anterior segment optical coherence tomography (AS-OCT) has enabled non-invasive and quantitative estimation of the TM. AS-OCT can measure tear

2

meniscus height (TMH), tear meniscus area (TMA) and tear meniscus volume (TMV). Anterior segment OCT has been reported as a useful way to measure the severity of dry eye and to evaluate the efficacy of treatments.^[6]

In the present study, we evaluated TM change in dacryocystorhinostomy (DCR) with quantitative measurement of TMH, TMA, and TMV using AS-OCT in patients with primary acquired NLDO.

AIM OF THE WORK

The aim of this work is to evaluate if measurement of tear meniscus by anterior segment OCT is a reliable method of assessment of improvement after DCR, compared to other known methods which include dye disappearance test and lacrimal passages irrigation.

Chapter 1 ANATOMY OF THE LACRIMAL SYSTEM

Secretory system

Lacrimal Gland and Accessory Glands

The primary lacrimal gland is located in the superotemporal orbit in a shallow lacrimal fossa of the frontal bone. The gland is composed of numerous acini (lobular clusters of secretory cells) that drain into progressively larger tubules and ducts. The acini are made up of a basal myoepithelial cell layer with inner columnar secretory cells. Contraction of the myoepithelial cells helps force secretions into the tubules and drainage ducts.^[7]

The gland measures $20 \times 12 \times 5$ mm and is divided by the lateral horn of the levator aponeurosis into a larger orbital lobe, and a lesser palpebral lobe below. ^[8,9]

Two to six secretory ducts from the orbital lobe of the lacrimal gland pass through the palpebral lobe or along its fibrous capsule, joining with ducts from the palpebral lobe to form 6-12 tubules that empty into the superolateral conjunctival fornix 4–5 mm above the tarsus.^[7,11]

Figure (1): The two main parts of the lacrimal gland (the orbital and the palpebral parts) separated by levator palpebrae superioris apponeurosis.^[10]

Accessory lacrimal glands, located in the conjunctival fornices and along the superior tarsal border, are comprised of:

- Accessory glands of Krause: 20–40 in the superior conjunctival fornix and 10–20 in the lower conjunctival fornix.
- Accessory glands of Wolfring: located in the upper lid superior tarsal border. ^[8,12]

The lacrimal gland receives innervation from cranial nerves V and VII, as well as from the sympathetics of the superior cervical ganglion.^[13]

Parasympathetic secretomotor innervations to the lacrimal gland is more complex. Parasympathetic secretomotor fibers originate in the lacrimal nucleus of the pons, and travel a long course within the nervus intermedius, the greater suprficial

Section Anatomy of the Lacrimal System ______ Review of Literature ______

petrosal nerve, deep petrosal nerve, and the vidian nerve to finally synapse in the pterygopalatine ganglion. ^[13]

Postganglionic parasympathetic fibers leave the pterygopalatine ganglion via the pterygopalatine nerves to innervate the lacrimal gland. ^[14]

Figure (2): Sympathetic and parasympathetic innervations to the lacrimal gland. ^[15]

The lacrimal gland receives arterial supply from the lacrimal artery, with contributions from the recurrent meningeal artery and a branch of the infraorbital artery. The intraorbital venous drainage travels adjacent to the artery and drains into the superior ophthalmic vein. ^[16]

Excretory System (Lacrimal Drainage System)

The lacrimal excretory pathway begins at a 0.3 mm opening on each medial eyelid termed the punctum. ^[11] The punctal opening widens into the ampulla, which is 2 mm in height and oriented perpendicular to the eyelid margin, before making a sharp turn into the canaliculi which run parallel to the eyelid margins. The canaliculi, measuring 8–10 mm in length and 0.5–1.0 mm in diameter, are lined with stratified squamous epithelium and surrounded by orbicularis muscle (Fig. 3). The superior and inferior canaliculi merge into a common canaliculus before entering the nasolacrimal sac in more than 90 % of individuals. ^[11,17]

The superficial pretarsal orbicularis oculi muscles envelope the canaliculi as they traverse the medial eyelids and medial canthal region.

Figure (3): Approximate dimensions of the lacrimal excretory system (BE bulla ethmoidalis, IT inferior turbinate, MS maxillary sinus, MT middle turbinate).^[18]