

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Sensitization to Ragweed in Egyptian Children with Respiratory Allergy

Thesis

Submitted for Partial Fulfillment of Master Degree in **Pediatrics**

By

Ruqaya Hamada Mohammad Mansour

M.B.B.Ch, 2015, Faculty of Medicine, Misr University for Science and Technology

Under Supervision of

Prof. Elham Mohammad Hossny

Professor of Pediatrics Faculty of Medicine - Ain Shams University

Dr. Ghada Abdel Haleem Shousha

Lecturer of Pediatrics
Faculty of Medicine - Ain Shams University

Dr. Mohamed Salah El Din Abd El Kader

Lecturer of Pediatrics
Faculty of Medicine - Misr University for Science and Technology

Faculty of Medicine - Ain Shams University
2020

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Elham Mohammad Hossny**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her meticulous supervision, valuable instructions and generous help.

Special thanks are due to **Dr. Ghada Abdel Haleem Shousha**, Lecturer of Pediatrics, Faculty of

Medicine, Ain Shams University, for her sincere efforts,

fruitful encouragement.

I am deeply thankful to **Dr. Mohamed Salah & Din**Abd & Kader, Lecturer of Pediatrics, Faculty of Medicine,

Misr University for Science and Technology, for his great help,

outstanding support, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed and to the enrolled children and parents for their kind cooperation.

Ruqaya Hamada Mohammad Mansour

Tist of Contents

Title	Page No.
List of Abbreviations	5
List of Tables	7
List of Figures	9
Introduction and Aim of the Work	1
Review of Literature	
Ragweed Pollen Allergy	13
Allergy Diagnostic Tests	27
■ Lines of Treatment of Ragweed Allergy	57
Subjects and Methods	63
Results	70
Discussion	82
Recommendations	90
Summary	91
References	
Arabic Summary	

Tist of Abbreviations

Abb.	Full term
<i>AAAAI</i>	American Academy of Allergy, Asthma and
	Immunology
ACE	Angiotensin converting enzyme
	Atopic Dermatitis
	Allergic Rhinitis
ARIA	Allergic Rhinitis and its Impact on Asthma
<i>BAT</i>	Basophil Activation Test
	Bioequivalent Allergen Unit
	Beta-LactoGlobulin
<i>BU</i>	Biological Unit
<i>CAP</i>	Community-Acquired Pneumonia
	Cellular Antigen Stimulation Test
<i>CD</i>	Cluster of Differentiation
<i>CFU</i>	Colony- Forming Unit
<i>CSPT</i>	Commercial Skin Prick Test
<i>DBPCFC</i>	Double-blind placebo controlled food
	challenge
<i>Der P</i>	Dermatophagoides Pteronyssinus
<i>EAACI</i>	European Academy of Allergy and Clinical
	Immunology
ELISA	Enzyme – Linked Immunosorbent Assay
<i>ER</i>	Emergency Room
<i>ETAC</i>	Early Treatment of the Atopic Child
<i>FA</i>	Food Allergy
$Fc\gamma R$	Fc Gamma Receptor
<i>FFSPT</i>	Fresh Fruit Skin Prick Test
<i>GINA</i>	Global Initiative for Asthma
	Inhaled Corticosteroids
<i>IDT</i>	Intradermal Test
<i>Ig</i>	Immunoglobulin
<i>IL</i>	Inter Leukin
<i>KSA</i>	Kingdom of Saudi Arabia
<i>LABA</i>	Long Acting Beta Agonist

Tist of Abbreviations cont...

Abb.	Full term
I.PR	Late-Phase Reaction
	Lipid Transfer Proteins
	Leukotriene Receptor Antagonist
	Mechanical Ventilation
	Nicotinamide Adenine Dinucleotide
	Phosphate
OAS	Oral Allergy Syndrome
OVA	• • •
<i>PICU</i>	Pediateric Intensive Care Unit
<i>PPV</i>	Positive Predictive Value
<i>PR</i>	Pathogen Response
<i>PUVA</i>	Psoralen and Ultraviolet A
<i>RAST</i>	Radio-AllergoSorbent Test
SCIT	Subcutaneous Immunotherapy
SD	Standard Deviation
<i>SPSS</i>	Statistical Program for Social Science
<i>SPT</i>	Skin Prick Test
<i>Th2</i>	T helper type 2
<i>TLPs</i>	Thaumatin like Proteins
	United Arab Emirates
<i>UK</i>	United Kingdom
USA	United State of America
UV	Ultraviolet
<i>WAO</i>	World Allergy Organization

Tist of Tables

Table No	. Title	Page No.
Table 1:	Classification of PR proteins and example of their function	_
Table 2:	Families of PR proteins commitmed in IgE cross-reactivity results in OAS	ulting
Table 3:	Prevailing aero-allergens	31
Table 4:	Interpretation of skin prick test	37
Table 5:	Grading for the skin prick test	38
Table 6:	False results in skin prick tests	41
Table 7:	Medicines having a suppressant effective skin prick test	
Table 8:	Grading for the intradermal test	45
Table 9:	SPT compared with specific IgE	47
Table 10:	Concentration of IgG in relation to ant	igens51
Table 11:	Diagnostic tests of unproven value	54
Table 12:	Allergen-specific immunotherapy: indications and special considerat	•
Table 13:	Sublingual immunotherapy	60
Table 14:	Clinical data of the included children	70
Table 15:	Ragweed grass pollen skin Prick test re	esults71
Table 16:	Treatment modalities of bronchial as among the studied children	
Table 17:	Comparison between ragweed sens and non-sensitized as regards age, se age at diagnosis	x and

Tist of Tables cont...

Table No.	Title	Page No.
Table 18:	Effect of passive smoking and residen ragweed sensitization	•
Table 19:	Skin and nasal allergies in relation	
Table 20:	Family history of atopy in relation ragweed sensitization	
Table 21:	Flare ups and hospitalizations a included children in relation to the sta ragweed sensitization	tus of
Table 22:	Ragweed sensitization in relation to timing, grading and level of contribronchial asthma	ol of
Table 23:	Relation between ragweed sensitization asthma controller therapies	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Appearance of A. artemisiifolia	19
Figure (2):	A. Artemisiifolia pollen	
Figure (3):	Worldwide distribution of ragy	
1180110 (0)1	distribution of ragweed in Europe	•
Figure (4):	Approach to diagnosis of OAS	
Figure (5):	Allergy, anaphylaxis and atopy defini	
Figure (6):	The atopic march	
Figure (7):	SPT procedures	35
Figure (8):	Difference between wheal and flare	38
Figure (9):	Measurement of wheal size	39
Figure (10):	Skin prick test interpretation	40
Figure (11):	Diagnostic algorithm for food allergy	47
Figure (12):	Diagnostic algorithm for inhalant alle	ergy 50
Figure (13):	History of other allergies	72
Figure (14):	Family history of atopy	
Figure (15):	Pattern of bronchial asthma among	
	studied children	
Figure (16):	Responsiveness of bronchial asthm	
	treatment	
Figure (17):	Adherence to treatment among	
T ! (10)	included children	
Figure (18):	Residential classification of rag	
E' . (10)	sensitization	
Figure (19):	Ragweed sensitization in relation to	
E: (90).	infantile type of feeding	
Figure (20):	Frequency of hospitalization of	
Figure (91).	included children in the last year School attendance in relation to rag	
rigure (21):	sensitization.	

INTRODUCTION AND AIM OF THE WORK

Asthma is a heterogeneous lung disorder characterized by airway obstruction, inflammation and eosinophil infiltration into the lung. Asthma, typically begins in childhood and is the most common chronic disease of childhood, it has reached epidemic proportions. The symptoms of asthma include coughing, wheezing, shortness of breath, and even death (*Meltzer*, 2016).

Ragweed has long been recognized as a major health problem. Allergic rhinitis (AR) and asthma are the main allergic diseases that have been associated with exposure to ragweed pollen, while skin allergic reactions are less common. In the 1930s ragweed was identified as the major cause of hay fever and asthma (*Ihler and Canis*, 2015).

About 40 species are known and *Ambrosia artemisiifolia* (common or short ragweed) and *A. trifida* (giant ragweed) are the most common species (*Essl et al., 2015*). Among all Ambrosia species, *A. artemisiifolia* is the most prominent and invasive, being a major cause of allergy in late summer worldwide (*Chen et al., 2018*).

Environmental factors such as temperature and CO2 concentrations have great influences on pollen production and therefore on the allergen amount. These two environmental

factors are increasing due to climate change and urbanization (Ghiani et al., 2016).

The majority of the Middle East countries are generally known to be desert regions with low rainfall and very high temperatures. As such, weeds are one of the common inhabitants of the plant kingdom as they require less water and can survive under harsh conditions. Therefore, most of the countries in the region have weeds pollen prevalent in their environment (Babu et al., 2011).

Ragweed pollen allergy represents a major health issue and this may be due to the high pollen production of the ragweed plant and the allergenic potency of the ragweed pollen itself. One single ragweed plant can release up to one billion pollen grains per season (Tosi et al., 2011).

Exposure or the increase of pollen counts over a certain period of time leads to a strong increase of the sensitization rate and the occurrence of symptoms. It is important to underline that even low exposure, meaning as little as 10 pollen grains per cubic meter of air, can trigger an allergic reaction (DellaValle et al., 2012).

Ragweed pollen grains can be transported several hundreds to thousands of kilometers by air and can cause allergy symptoms in areas where the ragweed plant is not widespread (Chen et al., 2018).

Due to their high prevalence and severe symptoms, ragweed pollen-induced AR and asthma may significantly affect quality of life, with an impact on attendance and performance at school or the workplace, leading to considerable healthcare costs and a high economic burden (Larsen et al., 2016).

Aim of the Work

This study aimed at evaluating the frequency of ragweed sensitization among a group of atopic Egyptian children with physician-diagnosed respiratory allergies through SPT. The ultimate objective is to roughly estimate the contribution of this allergen as a trigger for respiratory allergy in the pediatric age group in Egypt.