

Ain Shams University Faculty of Women's for Arts Science and Education Cairo- Egypt

Nanomaterials – based impedimetric sensor for biological and environmental applications

Thesis Submitted in Partial Fulfillment of The Requirements of

The Degree of Philosophy Doctor of Sciences in Chemistry

(Inorganic and Analytical Chemistry)

Submitted by

Hend Samy Amin Magar (M. Sc. 2013) Supervised by

Mona Abdel Aziz Ahmed

Prof. Dr.

Prof. of Analytical Chemistry

Faculty of Women's for Arts, Science and Education, Ain Shams University Prof. Dr.

Mohammed Nooredeen Abbas

Prof. of Analytical Chemistry National Research Centre,

Dokki,

Giza

2020

Ain Shams University Faculty of Women's for Arts Science and Education Cairo- Egypt

Approval Sheet

Title of Ph.D. Thesis:

Nanomaterials – based impedimetric sensor for biological and environmental applications

Name of the candidate: Hend Samy Amin Magar

This thesis has been approved for submission by the supervisors

Prof. Dr. Mona Abdel Aziz Ahmed

Prof. of Analytical Chemistry

Prof. Dr. Mohammed Nooredeen Abbas

Prof. of Analytical Chemistry

Head of Chemistry Department Prof. Dr. Mansoura Esmail

.

.

.....

Approval Stamp

/ / 2020

Approval of Faculty Council

/ /2020

Date of approval
/ /2020

Qualifications

Student Name	: Hend Samy Amin Magar
Scientific Degree	: M.SC. (Chemistry)
Department	: Chemistry
Name of Faculty	: Faculty of Science
University	: El-monefiya University
Master degree	: 2013

Acknowledgments

I wish to express my deep appreciation to **Prof. Dr. Mona Abdel Aziz Ahmed**, Professor of Analytical Chemistry, Chemistry department, Faculty of Women's for Arts, Science and Education, Ain Shams University, for his kind supervision, helping motivation and valuable advices.

I would like to express my sincere gratitude to **Prof. Dr. Mohammed Noor edeen Abbas,** Professor of Analytical Chemistry, Applied Organic Chemistry department, National Research Centre for the suggestion of the topic of this work, precious supervisihon, valuable guidance in my Ph.D. study and research. His patience, valuable advice throughout the whole work and helping motivation and immense knowledge in science has been inspiring me during my study. I could not have my thesis completed without his help and advice.

I have to acknowledge the support of Marie Curie FP7 Peoples Actions – IRSES No. 318053: SMARTCANCERSENS project and NATO Science for Peace Project "Novel Electrochemical Nano-Sensors for Toxic Ions Detection" CBP.NUKR.SFP 984173.

My thanks are expanded to my parents, husband, brothrs and colleagues in the department of Applied Organic Chemistry, National Research Center, for their cooperation and their help in various ways and my thanks to all staff members of Chemistry Department in the Faculty of Women's for Arts, Science and Education, Ain Shams University.

Subject	Page
	No.
List of contents	1
Aim of the work	5
Summary	6
List of Abbreviations	11
List of Figures.	16
List of Tables	24
Chapter I	
Introduction	
1.1.Electrochemical Detection Techniques	27
1.1.1.Potentiometric devices	28
1.1.2.Amperometric devices	29
1.1.3.Conductometric devices	31
1.1.4.Cyclic Voltammetry (CV)	32
1.1.5.Electrochemical Impedance Spectroscopy (EIS)	34
1.1.6.Circuit design for faradaic impedimetric sensors and biosensors	44
1.1.6.1. Faradaic impedance	44
1.1.6.2. Nyquist plot	45
1.1.6.3. Elements of impedimetric circuit models	46
1.1.6.4. Assessment of impedance curves	47
1.1.7. Analytical electrochemical impedance spectroscopy applications:	52
1.2. Nano-materials synthesis and electrochemical sensor application	55
1.2.1. Graphene Oxide (GO)	55
1.2.2. Functionalized Derivatives of GO.	58
1.2.3. Reduced graphene oxide (RGO)	60
1.2.4. EIS with graphene composite electrodes for biological sensing applications.	63
1.2.5. Gold nano-particles (AuNPs)	
1.2.6. Metal oxide nanmaterials	71
1.3. Architecture	73
1.4. Self-Assembled Monolayers (SAMs)	76
1.4.1. Concept of Self-Assembly	78
1.4.2. SAMs of Thiolates on Gold	82
1.4.3.Preparation of SAMs	85
Chapter II	

A Novel Impedimetric Sensor using Graphene Oxide / Gold	
Nanoparticles/ Benzofuran Carbohydrazide Composite for Nano-molar	
Determination of Chromium (III)	
Abstract	89
2.1. Introduction	90
2.2. Exepremintal	93
2.2.1. Materials and methods	93
2.2.2. Morphological characterization using transmission electron	97
microscope (TEM)	
2.2.3. Sensors preparation	97
2.3. Results and discussion	98
2.3.1. Electrochemical characterization	
2.3.2. Electrochemical responses of the Ionophore to the Cr (III)	101
2.3.3. Assay Optimization	101
2.3.3.1. Effect of gold nanoparticles on the EIS performance	101
2.3.3.2. Effect of accumulated potential	104
2.3.3.3. Impedance analysis of the electrode	105
2.3.4. Specificity	108
2.3.5. Modelisation of the results	109
2.3.5.1. Charge transfer resistance R _{ct} variations	110
2.3.6. Determination of Cr (III) in Urine	114
2.4. Conclusion	115
Chapter III	
Choline Biosensor based on construction of carbon nanotubes/gold	
nanoparticles composite film	
Abstract	117
3.1 Introduction	118
3.2. Experimental	119
3.2.1. Reagents	119
3.2.2. Apparatus and measurements	120
3.2.3. Preparation of Gold nanoparticles (Au NPs)	120
3.2.4. Preparation of carbon nanotubes (MWCNT) in chitosan solution	121
3.2.5. Preparation of the modified electrodes	121
3.3. Result and discussion	123
3.3.1. TEM characterization	124
3.3.2. Optimization of experimental variables	125
3.3.2.1. Optimization of ChOx concentration	126
3.3.2.2. Effect of pH	127
3.3.3. Electrochemical impedance spectroscopy	128
3.3.4. Reproducibility and repeatability of the modified electrode	134

3.3.5. Selectivity	134
3.3.6. Storage stability	134
3.4. Application	135
3.4. Conclusion	135
Chapter IV	
Highly sensitive choline oxidase enzyme inhibition biosensor for lead	
ions based on multiwalled carbon nanotube modified glassy carbon	
electrodes	
Abstract	139
4.1. Introduction	140
4.2. Experimental	143
4.2.1. Reagents and instrumentation	143
4.2.2. Preparation of the enzyme-modified electrode	143
4.2.3. Procedure for enzyme inhibition studies	144
4.3. Results and discussion	145
4.3.1. Optimization of the inhibition biosensor experimental conditions	145
4.3.1.1.Effect of the applied potential	145
4.3.1.2.Influence of pH	146
4.3.1.3.Influence of ChOx concentration	147
4.3.1.4.Influence of choline concentration	148
4.3.1.5.Effect of incubation time	149
4.3.2. Analytical inhibition studies with Pb^{2+}	150
4.3.2.1.Electrochemical impedance spectroscopy	150
4.3.3.Interferences	154
4.3.4.Tap water analysis	154
4.4. Conclusions	154
Chapter V	
Picomolar sensitive impedimetric sensor for salivary and serum calcium	
analysis at POC based on SAM of Schiff base modified gold electrode.	
Abstract	157
5.1. Introduction	158
5.2. Experimental	163
5.2.1. Materials	163
5.2.2.Apparatus	164
5.2.3.Electrochemical Set-up	165
5.2.4.Electrochemical Characterization using CV and EIS	165
5.2.5.Synthesis of Ionophore	166
5.2.6.Construction of the ionophore-ATP-Au sensor	169
5.3.Results and discussion	170

5.3.1. Synthesis of Ionophore	170
5.3.2. Surface morphological characterization of the sensor	
Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray	
(EDX)	
5.3.3. Electrochemical characterization of the modified sensor	
5.3.4. EIS measurements of the sensor in Acetate buffer solution	
5.3.5. Determination of the coverage rate of the gold electrode	183
5.3.6. Effect of pH on the sensor response	
5.3.7. Impedimetric Calcium determination using the modified gold	186
electrode	
5.3.8. Specificity of the proposed electrode	189
5.3.9. Repeatability and Reproducibility	181
5.3.10. Lifetime and durability	
5.3.11. Analytical application of the sensor	
5.4.Conclusion	
References	

Aim of the Work

An impedimetric sensor based on nanomaterials modification for biological, environmental and industrial applications. A new electrochemical impedance spectroscopy technique used due to its very high sensitivity and wide applications in the recent decades due to the capacity to elucidate the electronic and physical properties of the electrochemical system such as charge transfer resistances, capacitances, diffusion coefficients, pore sizes and diffusion coefficient .

SUMMERY

The thesis deals with a new technique method which named electrochemical impedance spectroscopy. Fabrication of impedimetric sensor based on nanomaterials modification. The investigation of their characteristic performance and evaluation of their biological, industrial and environmental matrices applications have been extensively considered. The thesis contains five chapters.

Chapter (I)

Deals with an introduction that is performing a precise literature survey focusing on the electro-chemical detection technique especially electrochemical impedance technique, preparation of nanomaterials (such as gold nanoparticles and graphene nanosheets) and self assembled monolayer method covering the last two decades. The characterization of impedimetric sensor and their application in biological, pharmaceutical, industrial and environmental matrices have been thoroughly surveyed.

Chapter (II)

Sensitive and selective impedimetric sensor for Cr (III) based on newly synthesized ionophore (N', N"'E, N', N"'E)- N', N"' – (((ethane- 1, 2 – diylbis bis (2,1)phenylene)) bis (methanylylidene)) bis (oxy)(3methylbenzofuran-2 carbohydrazide) in AuNPs/graphene oxide(GO)/graphite (Gt) paste electrode has been developed. Physical and chemical characterization of the paste electrode using UV-Vis, FTIR, TEM,