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,e generalized Gamma model has been applied in a variety of research fields, including reliability engineering and lifetime
analysis. Indeed, we know that, from the above, it is unbounded. Data have a bounded service area in a variety of applications. A
new five-parameter bounded generalized Gammamodel, the boundedWeibull model with four parameters, the bounded Gamma
model with four parameters, the bounded generalized Gaussian model with three parameters, the bounded exponential model
with three parameters, and the bounded Rayleigh model with two parameters, is presented in this paper as a special case. ,is
approach to the problem, which utilizes a bounded support area, allows for a great deal of versatility in fitting various shapes of
observed data. Numerous properties of the proposed distribution have been deduced, including explicit expressions for the
moments, quantiles, mode, moment generating function, mean variance, mean residual lifespan, and entropies, skewness,
kurtosis, hazard function, survival function, r th order statistic, and median distributions.,e delivery has hazard frequencies that
are monotonically increasing or declining, bathtub-shaped, or upside-down bathtub-shaped. We use the Newton Raphson
approach to approximate model parameters that increase the log-likelihood function and some of the parameters have a closed
iterative structure. Six actual data sets and six simulated data sets were tested to demonstrate how the proposed model works in
reality. We illustrate why the Model is more stable and less affected by sample size. Additionally, the suggested model for wavelet
histogram fitting of images and sounds is very accurate.

1. Introduction

,e gamma (ΓM) model, including Weibull, gamma, ex-
ponential, and Rayleigh as special submodels, among
others, is a very popular distribution for modeling lifetime
data and for modeling phenomenon with monotone failure
rates. An advantage of ΓM is that it requires a little measure
of parameters for learning. Also, these parameters can be
measured by getting the expectation maximization (EM)
algorithm [1, 2] to maximize the log-likelihood function.
,e early generalization of gamma distribution can be
traced back to Amoroso [3] who discussed a generalized
gamma distribution and applied it to fit income rates.
Johnson et al. [4] gave a four parameter generalized gamma

distribution which reduces to the generalized gamma
distribution defined by Stacy [2] when the location pa-
rameter is set to zero. Mudholkar and Srivastava [5] in-
troduced the exponentiated method to derive a
distribution. ,e generalized gamma defined by Stacy [2] is
a three-parameter exponentiated gamma distribution.
Agarwal and Al-Saleh [6] applied generalized gamma to
study hazard rates. Balakrishnan and Peng [7] applied this
distribution to develop generalized gamma frailty model.
Cordeiro et al. [8] derived another generalization of Stacys
generalized gamma distribution using exponentiated
method and applied it to life time and survival analysis.
Nadarajah and Gupta [9] proposed another type of gen-
eralized gamma distribution with application to fit drought
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data. As of late, Chen et al. [10] used generalized gamma
distribution with three parameters for flood frequency
analysis, Zhao et al. [11] used generalized gamma distribution
with three parameters to give the statistical characterizes of
high-resolution SAR images, and Mead et al. [12] defined
modified generalized gamma distribution so as to investigate
greater flexibility in modeling data from a practical viewpoint
and they derived multifarious identities and properties of this
distribution, including explicit expressions for the moments,
quantiles, mode, moment generating function, mean devia-
tion, mean residual lifetime, and expression of the entropies.
We extend all the past models with five parameters to rangeR
(real numbers) or any bounded subset of R. Fulger et al. [13]
generate random numbers within any arbitrary interval. We
introduce in this paper the high flexibility of a bounded
generalized Gamma model with five parameters (BGΓM) for
analyzing data. ,e BGΓMModel is of noticeable significance
for image coding, compression applications, sound system,
wind speed data, and breast cancer data fitting. ,is new
distribution has a flexibility to fit any kind of observed data
whose pdf is monotonically increasing, decreasing, bathtub,
and upside down bathtub-shaped depending on the pa-
rameter values and bounded support regions. ,e remainder
of this paper is organized as follows: ,e BGΓM with its sub
models and some shapes describe the hazard rate function are
defined in Section 2. Some properties of the BGΓM distri-
bution are studied in Section 3 including, quantile, mode,
moments, moment generating function, mean deviation,
mean residual life and entropy. Section 4 presents the pa-
rameter estimation. Section 5 sets out the experimental re-
sults. Section 6 presents our conclusions.

2. TheBoundedGeneralizedGammaModel and
Its Special Models

,e standard form of gamma function is

Γ(η) � 􏽚
∞

0
x
η− 1

e
− xdx, η> 0. (1)

,e incomplete gamma function is defined by

Γ(η, s) �
1
Γ(η)

􏽚
s

0
x
η− 1

e
− xdx, η> 0 and s≥ 0. (2)

,e probability density function (pdf) of the generalized
gamma distribution is given by

T(x|Θ) �
λβη

2δΓ(η)

|x − u|

δ
􏼠 􏼡

ηλ− 1

e
− β(|x− u|/δ)λ

, (3)

for all x ∈ R, where Θ � (u, δ, β, η, λ)′, δ, η, λ, β> 0 and
u ∈ R. ,e cumulative distribution function (cdf) of gen-
eralized gamma distribution defined as follows:

D(z) � 􏽚
z

−∞
T(x|Θ)dx � 􏽚

z

−∞

λβη

2δΓ(η)

|x − u|

δ
􏼠 􏼡

ηλ− 1

e
− β(|x− u|/δ)λdx

�
1
2

+
1
2
sign(z − u) Γ η, β

|z − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η, β

|u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(4)

Let Ω � [a, b]⊆R and we denote the indicator function
by

1Ω(x) �
1, if x ∈ Ω,

0, if otherwise.
􏼨 (5)

We define the pdf of the bounded generalized gamma
distribution (BGΓM) as

Υ � Υ(x|Θ) �
T(x|Θ)

􏽒ΩT(x|Θ)dx

�
λβη/2δΓ(η)(|x − u|/δ)

ηλ− 1
e

− β(|x− u|/δ)λ

􏽒ΩT(x|Θ)dx
, for allx ∈ Ω.

(6)

In another form, we can write the pdf of the bounded
generalized gamma distribution (BGΓM) as

Υ �
λβη/2δΓ(η)(|x − u|/δ)

ηλ− 1
e

− β(|x− u|/δ)λ

D(b) − D(a)
, (7)

where

D(b) − D(a) �
1
2
sign(b − u) Γ η, β

|b − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η, β

|u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

−
1
2
sign(a − u) Γ η, β

|a − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η, β

|u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(8)

It is clear to see that

Υ≥ 0 and􏽚
Ω
Υ(x|u, δ, β, η, λ)dx � 1. (9)

Hence, the cdf of the bounded generalized gamma
distribution (BGΓM) is given by

Φ(x) �
D(x) − D(a)

D(b) − D(a)

�
sign(x − u) Γ η, β(|x − u|/δ)

λ
􏼐 􏼑 − Γ η, β(|u|/δ)

λ
􏼐 􏼑􏽨 􏽩 − sign(a − u) Γ η, β(|a − u|/δ)

λ
􏼐 􏼑 − Γ η, β(|u|/δ)

λ
􏼐 􏼑􏽨 􏽩

sign(b − u) Γ η, β(|b − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩 − sign(a − u) Γ η, β(|a − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩
.

(10)
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,e parameters u(δ, β) and (η, λ) are corresponding to
the location, scale, and shape parameters, respectively. Note
that Υ(x|Θ) can be any kind of distribution, for example, in
exponential distribution (ED) [14, 15] be ϕ(x|u, δ, β),
Weibull distribution (WD) [16–18] be T(x|u, δ, β, λ), Ray-
leigh distribution (RD) [19, 20] be T(x|u, δ), generalized
Gaussian distribution (GGD) [21] be T(x|u, δ, λ), Gaussian
distribution (GD) [15] be T(x|u, δ), Laplacian distribution
(LD) [22] be T(x|u, δ) and Gamma distribution (ΓD) [1] be
T(x|u, δ, η, β). ,ese distributions are all unbounded with
support range (0,∞). We extend all the past models with
range (−∞,∞) also to the bounded case. ,e BGΓM has
several models as special cases, which makes it distin-
guishable scientific importance from other models. We
investigate the various special models of the BGΓM as listed
in Table 1.,e survival function and hazard rate function for
BGΓM are, respectively, given by

S(x) � 1 −Φ(x)

�
sign(b − u) Γ η, β(|b − u|/δ)

λ
􏼐 􏼑 − Γ η, β(|u|/δ)

λ
􏼐 􏼑􏽨 􏽩 − sign(x − u) Γ η, β(|x − u|/δ)

λ
􏼐 􏼑 − Γ η, β(|u|/δ)

λ
􏼐 􏼑􏽨 􏽩

sign(b − u) Γ η, β(|b − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩 − sign(a − u) Γ η, β(|a − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩
,

∧(x) �
Υ(x|Θ)

S(x)

�
λβη/2δΓ(η)(|x − u|/δ)

ηλ− 1
e

− β(|x− u|/δ)λ

sign(b − u) Γ η, β(|b − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩 − sign(x − u) Γ η, β(|x − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩
.

(11)

In Figures 1 and 2, we display the plots of the pdf of
BGΓM for various parameters. Figure 3 displays the BGΓM
failure rate function which can be increasing, decreasing,
bathtub, and upside down bathtub-shaped depending on the
parameter values.

3. Properties of BGΓM

In this section, we provide some general properties of the
BGΓM including quantile function, mode, moments, mean

deviation, mean residual life and mean waiting time, Rényi
entropy, and order statistics.

3.1. Mode and Quantile. ,e pth quantile function of the
BGΓM is the solution of

Φ xp􏼐 􏼑 �
D xp􏼐 􏼑 − D(a)

D(b) − D(a)
� p⇒

sign xp − u􏼐 􏼑 Γ η, β xp − u
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌/δ􏼒 􏼓
λ

􏼠 􏼡 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏼢 􏼣 − sign(a − u) Γ η, β(|a − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩

sign(b − u) Γ η, β(|b − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩 − sign(a − u) Γ η, β(|a − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩
� p.

(12)

,e median, denoted by μ∗, can be obtained by
substituting p � 0.5 in 10 and solving the equation

Table 1: ,e comparative models are special cases of the BGΓM.

GΓM BGΓM: Ω � R

BΓM BGΓM: λ � 1
ΓM BGΓM: Ω � R and λ � 1
BWM BGΓM: η � 1
WM BGΓM: Ω � R, η � 1
BGGM BGΓM: η � 1/λ and β � (Γ(3/λ)/Γ(1/λ))λ/2

GGM BGΓM: Ω � R, η � 1/λ and β � (Γ(3/λ)/Γ(1/λ))λ/2

BEM BGΓM: λ � 1, and η � 1
EM BGΓM: Ω � R, λ � 1, and η � 1
BGM BGΓM: λ � 2, η � 0.5 and β � 0.5
GM BGΓM: Ω � R, λ � 2, η � 0.5 and β � 0.5
BRM BGΓM: λ � 2, η � 1 and β � 0.5
RM BGΓM: Ω � R, λ � 2, η � 1 and β � 0.5
BLM BGΓM: λ � 1, η � 1 and β �

�
2

√

LM BGΓM: Ω � R, λ � 1, η � 1 and β �
�
2

√
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Figure 1: Continued.
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Figure 1: ,e pdf of BGΓM for a � −2, b � 3, u � 1, δ � 1, β � 1 and (a) η � 7 and λ � 2, 4, 7; (b) λ � 7 and η � 2, 4, 9; (c) (η � 0.5, λ � 2),
(η � 2, λ � 0.6) and (η � 7, λ � 5).
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Figure 2: Continued.
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sign μ∗ − u( 􏼁 Γ η, β μ∗ − u
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌/δ􏼐 􏼑
λ

􏼒 􏼓 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏼔 􏼕 − sign(a − u) Γ η, β(|a − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩

sign(b − u) Γ η, β(|b − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩 − sign(a − u) Γ η, β(|a − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩
� 0.5. (13)

,e mode, denoted by xm of the BGΓ distribution, is
given by

xm � u ± δ
ηλ − 1
βλ

􏼠 􏼡

1/λ

, such thatΥ″ xm|Θ( 􏼁< 0. (14)

Remark 1

(1) If ηλ � 1, then the BGΓ distribution is unimodal
distribution

(2) If ηλ> 1, then the BGΓ distribution is multimodal
distribution
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Figure 2: ,e pdf of BGΓM for a � −2, b � 3, u � 1, δ � 1, λ � 2 and (a) β � 2 and η � 0.5, 5, 7; (b) η � 3 and β � 0.5, 1, 10;
(c)(η � 0.5, β � 0.5), (η � 0.5, β � 3), (η � 3, β � 0.5) and (η � 4, β � 4).
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3.2. Moments, Generating Function, and Mean Deviation. ,e rth moment about zero of BGΓ distribution is

E x
r

( 􏼁 � 􏽚
b

a
x

rΥ(x|Θ)dx

�

± 􏽐
r
n�0

r

n

⎛⎝ ⎞⎠u
n ±δ/β1/λ􏼐 􏼑

r− n
Γ(η +(r − n/λ)) Γ η +(r − n/λ), β(|b − u|/δ)

λ
􏼐 􏼑 − Γ η +(r − n/λ), β(|a − u|/δ)

λ
􏼐 􏼑􏽨 􏽩

2Γ(η)(D(b) − D(a))
.

(15)

,e mean μ of the BGΓ distribution is given by

μ � E(x)

�
±1

2Γ(η)(D(b) − D(a))
± δβ1/λΓ η +

1
λ

􏼒 􏼓 Γ η +
1
λ
, β

|b − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η +

1
λ
, β

|a − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

+ uΓ(η) Γ η, β
|b − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η, β

|a − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(16)

,e variance σ2 of the BGΓ distribution is given by
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Figure 3: ,e hazard plots of BGΓM for a � −2, b � 3, u � 1, δ � 1 and different values of β, η and λ.
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σ2 � E x
2

􏼐 􏼑 − E
2
(x)

�
±1

2Γ(η)(D(b) − D(a))

δ2

β2/λ
Γ η +

2
λ

􏼒 􏼓 Γ η +
2
λ
, β

|b − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η +

2
λ
, β

|a − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

⎧⎨

⎩

±
2uδ
β1/λ
Γ η +

1
λ

􏼒 􏼓 Γ η +
1
λ
, β

|b − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣

− Γ η +
1
λ
, β

|a − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎤⎥⎥⎦

+u
2Γ(η) Γ η, β

|b − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η, β

|a − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

⎫⎬

⎭ − μ2.

(17)

,e central moments of BGΓ distribution can be ob-
tained as follows

E (x − μ)
r

( 􏼁 � 􏽚
b

a
(x − μ)

rΥ(x|Θ)dx

�
±1

2Γ(η)(D(b) − D(a))
􏽘

r

n�0

r

n

⎛⎝ ⎞⎠u
n ±δ

β1/λ
􏼠 􏼡

r− n

Γ η +
r − n

λ
􏼒 􏼓 Γ η +

r − n

λ
, β

|b − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣

−Γ η +
r − n

λ
, β

|a − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎤⎥⎥⎦ 􏽘

r

j�0

r

j

⎛⎝ ⎞⎠(−μ)
r− j

,

c1 �
E (x − μ)

3
􏼐 􏼑

σ3
,

c2 �
E (x − μ)

4
􏼐 􏼑

σ4
.

(18)

,e moment generating function Mx(t) of BGΓ dis-
tribution is

Mx(t) � 􏽚
b

a
e

txΥ(x|Θ)dx

�

± 􏽐
∞
r�0 t

r/r! 􏽐
r
n�0

r

n

⎛⎝ ⎞⎠u
n ±δ/β1/λ􏼐 􏼑

r− n
Γ(η +(r − n/λ)) Γ η +(r − n/λ), β(|b − u|/δ)

λ
􏼐 􏼑 − Γ η +(r − n/λ), β(|a − u|/δ)

λ
􏼐 􏼑􏽨 􏽩

2Γ(η)(D(b) − D(a))
.

(19)

,e mean deviation Md of BGΓ distribution can be
derived as
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Md � E(|x − μ|) � 􏽚
b

a
|x − μ|Υ(x|Θ)dx � 2 μΦ(μ) − 􏽚

μ

a
xΥ(x|Θ)dx􏼔 􏼕

�
2μ sign(μ − u) Γ η, β(|μ − u|/δ)

λ
􏼐 􏼑 − Γ η, β(|u|/δ)

λ
􏼐 􏼑􏽨 􏽩 − sign(a − u) Γ η, β(|a − u|/δ)

λ
􏼐 􏼑 − Γ η, β(|u|/δ)

λ
􏼐 􏼑􏽨 􏽩

sign(b − u) Γ η, β(|b − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩 − sign(a − u) Γ η, β(|a − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩

−
1

Γ(η)(D(b) − D(a))

δ
β1/λ
Γ η +

1
λ

􏼒 􏼓 Γ η +
1
λ
, β

|μ − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η +

1
λ
, β

|a − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

Γ(η) Γ η, β
|μ − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η, β

|a − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(20)

In Table 2, the Median, Mode, Mean, Variance, Skew-
ness, and Kurtosis of BGΓM have given for a � −2, b � 3,
u � 1, δ � 1, and β � 1 and various values of η and λ. From
Table 2, we note that for fixed values of a, b, u, δ, β, and η, the
Kurtosis is decreasing function of λ. Also, for fixed values of
a, b, u, δ, β, and λ, the Mode 1, Variance, and Skewness are
increasing function and the Mode 2 and Mean are de-
creasing function of η. In Table 3, Median, Mode, Mean,
Variance, Skewness, and Kurtosis of BGΓM have given for
a � −2, b � 3, u � 1, δ � 1, and λ � 2 and various values of η

and β. From Table 3, we note that for fixed values of
a, b, u, δ, λ, and η, Mode 1 is decreasing, Median, Mode 2,
andMean are increasing functions of β. Also, for fixed values
of a, b, u, δ, β, and β, Mode 1 and Skewness are increasing
and Mode 2 and Mean are decreasing functions of η.

3.3. Mean Residual Life and Mean Waiting Time. ,e mean
residual life function, say φ(t), is given by

φ(t) � E(τ − t|τ > t)

�
sign(b − u) Γ η, β(|b − u|/δ)

λ
􏼐 􏼑 − Γ η, β(|u|/δ)

λ
􏼐 􏼑􏽨 􏽩 − sign(a − u) Γ η, β(|a − u|/δ)

λ
􏼐 􏼑 − Γ η, β(|u|/δ)

λ
􏼐 􏼑􏽨 􏽩

sign(b − u) Γ η, β(|b − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩 − sign(t − u) Γ η, β(|t − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩
⎛⎝

×
1

2Γ(η)(D(b) − D(a))

δ
β1/λ
Γ η +

1
λ

􏼒 􏼓 Γ η +
1
λ
, β

|b − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η +

1
λ
, β

|t − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

⎧⎨

⎩

± uΓ(η) Γ η, β
|b − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η, β

|t − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

⎫⎬

⎭
⎞⎠ − t.

(21)

,emean waiting time of BGΓ distribution, say φ(t), can
be derived as

φ(t) � t −
􏽒

t

a
xΥ(x|Θ)dx

Φ(t)

� t −
1

2Γ(η)(D(b) − D(a))

δ
β1/λ
Γ η +

1
λ

􏼒 􏼓 Γ η +
1
λ
, β

|t − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η +

1
λ
, β

|a − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

⎧⎨

⎩

± uΓ(η) Γ η, β
|t − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η, β

|a − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

⎫⎬

⎭

×
sign(b − u) Γ η, β(|b − u|/δ)

λ
􏼐 􏼑 − Γ η, β(|u|/δ)

λ
􏼐 􏼑􏽨 􏽩 − sign(a − u) Γ η, β(|a − u|/δ)

λ
􏼐 􏼑 − Γ η, β(|u|/δ)

λ
􏼐 􏼑􏽨 􏽩

sign(t − u) Γ η, β(|t − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩 − sign(a − u) Γ η, β(|a − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩
.

(22)
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3.4. Entropy. ,e entropy of a random variable X measures
the variation of the uncertainty. ,e Rényi entropy of BGΓ
distribution, say REX(]) for ]≠ 1 and ]> 0, is derived as

REX(]) �
ln􏽒

b

a
xΥ](x|Θ)dx

1 − ]

� −ln λ −
] ln 2
1 − ]

+ ln δ −
] ln Γ(η)

1 − ]

−
] ln(D(b) − D(a))

1 − ]
−
ln β
λ

−
1
λ

+
]η

1 − ]
􏼒 􏼓ln ]

+
1

1 − ]
ln Γ ]η −

] − 1
λ

􏼒 􏼓 +
1

1 − ]
ln ±Γ ]η −

] − 1
λ

, β]
|b − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠∓Γ ]η −

] − 1
λ

, β]
|a − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭.

(23)

3.5. Order Statistics. Let X1:n, X2:n, . . . , Xn:n denote the
order statistics obtained from a random sample of size n

from BGΓ distribution. ,e probability density function of
ith order statistics is given by

fi: n(x) �
n!

(i − 1)!(n − i)!
(Φ(x))

i− 1
(1 −Φ(x))

n− iΥ(x|Θ)

�
n!λβη(|x − u|/δ)

ηλ− 1
e

− β(|x− u|/δ)λ
(D(x) − D(a))

i− 1
(D(b) − D(x))

n− i

2(i − 1)!(n − i)!δΓ(η)(D(b) − D(a))
n .

(24)

Table 2: Median, Mode, Mean, Variance, Skewness, and Kurtosis of BGΓM.

η λ Median Mode1 Mode2 Mean Variance Skewness Kurtosis
0.5 2 0.9979 1 1 0.9949 0.4895 −0.0525 2.8857
0.5 4 1.0037 1.7071 0.2929 1 0.5642 0 1.5708
0.5 7 0.9909 1.8632 0.1368 1 0.6661 0 1.2251
2 2 0.4207 2.2248 −0.2248 0.8932 1.8297 0.0117 1.4184
2 4 0.8071 2.1502 −0.1502 1 1.3293 0 1.13176489
2 7 0.9244 2.0925 −0.0924 1 1.1568 0 1.04581787
7 2 −1.3817 3.5495 −1.5495 −0.9009 2.0185 2.0649 5.7078
7 4 −0.1453 2.6119 −0.6119 0.9959 2.5958 0.0035 1.0358
7 7 0.9785 2.3166 −0.3166 1 1.7181 0 1.0121

Table 3: Median, Mode, Mean, Variance, Skewness, and Kurtosis of BGΓM.

η β Median Mode1 Mode2 Mean Variance Skewness Kurtosis
0.5 0.5 0.9732 1 1 0.9492 0.8732 −0.1824 2.6472
0.5 2 1 1 1 0.9999 0.2499 −0.002 2.993
0.5 7 1 1 1 1 0.0714 0 3
2 0.5 −0.2227 2.7321 −0.7321 0.4599 2.7085 0.2947 1.4377
2 2 0.8327 1.866 0.134 0.9968 0.9946 −0.0052 1.4863
2 7 1.001 1.4629 0.5371 1 0.2857 0 1.5
7 0.5 −1.722 4.6056 −2.6056 −1.547 0.5886 4.8737 28.0326
7 2 −0.483 2.8028 −0.8028 0.5854 3.0344 0.3259 1.2304
7 7 1.0855 1.9636 0.0364 1 1 0 1.1429
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,e pdf of the minimum and the maximum order
statistics of BGΓ distribution can be obtained, respectively, as
follows:

f1:n(x) �
nλβη(|x − u|/δ)

ηλ− 1
e

− β(|x− u|/δ)λ
(D(b) − D(x))

n− 1

2δΓ(η)(D(b) − D(a))
n ,

fn:n(x) �
nλβη(|x − u|/δ)

ηλ− 1
e

− β(|x− u|/δ)λ
(D(x) − D(a))

n− 1

2δΓ(η)(D(b) − D(a))
n .

(25)

If n is odd. ,e pdf of BGΓ distribution of the median is
obtained by substituting i � (n + 1)/2 in equation (24) as
follows:

f(n+1/2):n(x) �
n!λβη(|x − u|/δ)

ηλ− 1
e

− β(|x− u|/δ)λ
(D(x) − D(a))

n− 1/2
(D(b) − D(x))

n− 1/2

2((n − 1/2)!)
2δΓ(η)(D(b) − D(a))

n
. (26)

,e joint pdf of the ith and the lth order statistics for x<y

can be written as

fi,l: n(x) �
n!

(i − 1)!(l − i − 1)!(n − l)!
(Φ(x))

i− 1

(1 − Φ(y))
n− l

(Φ(y) −Φ(x))
l− i− 1Υ(x|Θ)Υ(y|Θ).

(27)

So the joint pdf of the ith and the lth order statistics of BGΓ
distribution is

fi,l:n(x) �
n!λ2β2η(D(x) − D(a))

i− 1
(D(b) − D(y))

n− l
(D(y) − D(x))

l− i− 1

4δ2Γ2(η)(D(b) − D(a))
n
(i − 1)!(l − i − 1)!(n − l)!

×
|x − u‖y − u|

δ2
􏼠 􏼡

ηλ− 1

e
− β (|x− u|/δ)λ+(|y− u|/δ)λ( ).

(28)

4. Maximizing the Log-Likelihood Function

Here, we consider the estimation of the unknown param-
eters of the BGΓD by the method of maximum likelihood.
Let x1, x2, . . . , xN be a random sample from the BGΓD. ,e
total log-likelihood (L(Θ)) is given by

L(Θ) � 􏽘
N

i�1
ln T xi|u, δ, β, η, λ( 􏼁 − ln􏽚

Ω
T(x|u, δ, β, η, λ)dx􏼔 􏼕.

(29)

4.1. Location Parameter Estimation. To maximize the like-
lihood function in (28), we consider the derivation of L with
the location u at the (t + 1) iteration step. We have

zL

zu
� 􏽘

N

i�1
u − xi( 􏼁 u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− 2 ηλ − 1 −

βλ
δλ

u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

λ
􏼠 􏼡􏼠 􏼡􏼨

−
􏽒Ω sign u − xi( 􏼁 u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− 1 ηλ − 1 − βλ/δλ u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

λ
􏼒 􏼓􏼒 􏼓T(x|Θ)dx

􏽒ΩT(x|Θ)dx

⎫⎪⎪⎬

⎪⎪⎭
.

(30)
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At that point as [23], we have

􏽚
Ω

T(x|Θ)dx ≈
1

M
􏽘

M

i�1
1Ω vi( 􏼁, (31)

where vi ∼ T(x|Θ(t)) indicates the random variable that is
drawn from the probability distribution T(x|Θ(t)), with
Θ(t) � (u(t), δ(t), β(t), η(t), λ(t))′ and M is the number of
random variables vi. We use M � 106, for our experiments.
In the same manner, we can write

􏽚
Ω

sign u − xi( 􏼁 u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− 1 ηλ − 1 −

βλ
δλ

u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

λ
􏼠 􏼡􏼠 􏼡T(x|Θ)dx

≈
1

M
􏽘

M

i�1
1Ω vi( 􏼁 sign u

(t)
− vi􏼐 􏼑 u

(t)
− vi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
− 1

η(t)λ(t)
− 1 −

β(t)λ(t)

δ(t)
􏼐 􏼑

λ(t)
u

(t)
− vi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
λ(t)

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠.

(32)

By using (31) and (32), we can rewrite (30) as

zL

zu
|u�u(t) ≈ 􏽘

N

i�1
u

(t)
− xi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
− 2

u
(t)

− xi􏼐 􏼑 η(t)λ(t)
− 1 −

β(t)λ(t)

δ(t)
􏼐 􏼑

λ(t)
u

(t)
− xi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
λ(t)

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠ − H u

(t)
− xi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, (33)

where

H �

􏽐
M
i�1 1Ω vi( 􏼁sign u

(t)
− vi􏼐 􏼑 u

(t)
− vi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
− 1

η(t)λ(t)
− 1 − β(t)λ(t)/ δ(t)

􏼐 􏼑
λ(t)

u
(t)

− vi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
λ(t)

􏼠 􏼡

􏽐
M
i�1 1Ω vi( 􏼁

.
(34)

According to the theory of robust statistics [24], any
estimate u is defined by an implicit equation:

􏽘
i

F xi − u( 􏼁 � 0. (35)

,is gives a numerical solution of the location of u as a
weighted mean:

u �
􏽐iωixi

􏽐iωi

;whereωi �
F xi − u( 􏼁

xi − u
. (36)

Now, we can apply (35) to zL/zu in (33), and the solution
of zL/zu � 0 gives the solutions of u at the (t + 1) step:

u
(t+1)

�

􏽐
N
i�1 u

(t)
− xi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
− 2

xi η(t)λ(t)
− 1 − β(t)λ(t)/ δ(t)

􏼐 􏼑
λ(t)

􏼠 􏼡 u
(t)

− xi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
λ(t)

􏼠 􏼡 + H􏼢 􏼣

􏽐
N
i�1 u

(t)
− xi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
−2

η(t)λ(t)
− 1 − β(t)λ(t)/ δ(t)

􏼐 􏼑
λ(t)

􏼠 􏼡 u
(t)

− xi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
λ(t)

􏼠 􏼡􏼢 􏼣

. (37)
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4.2. Scale Parameters Estimation. Putting the derivative of
the log-likelihood function L with respect to the scale pa-
rameter δ at the (t + 1) iteration step, we have

zL

zδ
� δ− 1

􏽘

N

i�1
βλδ− λ

u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
λ

− ηλ􏼔

−
􏽒Ω βλδ− λ

u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
λ

− ηλ􏼒 􏼓T(x|Θ)dx

􏽒ΩT(x|Θ)dx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(38)

Similarly as (31) and (32), we can rewrite zL/zδ as

zL

zδ
� δ− 1

􏽘

N

i�1
βλδ− λ

u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
λ

− ηλ − G􏼔 􏼕, (39)

where

G �

􏽐
M
i�1 β(t)λ(t) δ(t)

􏼐 􏼑
− λ(t)

u
(t)

− vi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
λ(t)

− η(t)λ(t)
􏼢 􏼣1Ω vi( 􏼁

􏽐
M
i�1 1Ω vi( 􏼁

.

(40)

,e solution of zL/zδ � 0 yields the solutions of δ at the
(t + 1) step:

δ(t+1)
�

β(t)λ(t) 􏽐
N
i�1 u(t) − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
λ(t)

􏽐
N
i�1 η(t)λ(t) + G􏼐 􏼑

⎛⎜⎝ ⎞⎟⎠

1/λ(t)

. (41)

,e next step is to update the estimate of the scale
parameter β. ,is includes fixing the other parameters and
improving the estimate of β by using the Newton Raphson
method [25]. Every cycle requires the first and second de-
rivatives of L(Θ) with respect to the parameter β.

β(t+1)
� β(t)

−
zL/zβ

z2L/zβ2􏼐 􏼑 + ε
|β�β(t) , (42)

where ε is a scaling element. ,e derivative of the function
L(Θ) regarding β is given by

zL

zβ
� 􏽘

N

i�1
f xi,Θ( 􏼁 −

􏽒Ωf(x,Θ)T(x|Θ)dx

􏽒ΩT(x|Θ)dx

⎧⎨

⎩

⎫⎬

⎭, (43)

where

f xi,Θ( 􏼁 �
1

T xi|Θ( 􏼁

zT xi|Θ( 􏼁

zβ
�
η
β

−
u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

δ
􏼠 􏼡

λ

. (44)

,e term zL/zβ can be approximated as

zL

zβ
|β�β(t) ≈ 􏽘
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,e term z2L/zβ2 is given by
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where

zf
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�

−η
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. (47)

Also the term z2L/zβ2 can be approximated as
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(48)

4.3. Shape Parameters Estimation. For shape parameter
estimation η by using the Newton Raphson method, we have

η(t+1)
� η(t)

−
zL/zη

z2L/zη2􏼐 􏼑 + ε
|η�η(t) . (49)

,e derivative of the function L(Θ) with respect to η is
given by
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where
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,e calculation of the term z2L/zη2 is obtained as
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where
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,e term z2L/zη2 can be approximated as
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where
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For shape parameter estimation λ by using the Newton
Raphson method, we have
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,e derivative of the function L(Θ) with respect to λ is given
by
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,e term zL/zλ can be approximated as

zL

zλ
|λ�λ(t) ≈ 􏽘

N

i�1
h

(t)
xi|Θ( 􏼁 −

􏽐
M
m�1 1Ω vm( 􏼁h

(t)
vm|Θ( 􏼁

􏽐
M
m�1 1Ω vm( 􏼁

􏼨 􏼩,

(61)

where

h
(t)

xi|Θ( 􏼁 �
1
λ(t)

+ η(t)
− β(t) u(t) − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

δ(t)
􏼠 􏼡

λ(t)

⎛⎜⎝ ⎞⎟⎠ln
u

(t)
− xi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

δ(t)
⎛⎝ ⎞⎠.

(62)

,e calculation of the term z2L/zλ2 is obtained as
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,e term z2L/zλ2 can be approximated as
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4.4. Algorithm. To study the stability of our model, we have
to find the set of initial points that generate a convergent
sequence which called stable points of the dynamical system,
i.e., we have to find u(0), δ(0), β(0), η(0), λ(0) such that
limt⟶∞u(t), limt⟶∞δ

(t), limt⟶∞β
(t), limt⟶∞η(t), and

limt⟶∞λ
(t) exist. Indeed for fixed initial, it is difficult to

predict how the approximation sequence behaves; hence, for
this purpose, we take a random numbers of initial points
until the convergence is verified (two successive approxi-
mations of each parameter correct to 4 decimal places). ,e
various steps of the proposed model can be summarized as
follows:

Step 1: Initialize the parameters Θ(u, δ, β, η, λ).
Step 2: Reestimate the parametersΘ(u, δ, β, η, λ), where
the most common value of scaling parameter ε is 10− 30

for our experiments.

+Update the parameter u in (37).
+Update the parameter δ in (41).
+Update the parameter β in (42).
+Update the parameter η in (49).
+Update the parameter λ in (58).
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Figure 4: ,e estimated histogram (a) the histogram of the observed data with u � 0.3; δ � 1.5; η � 2, λ � 3 and β � 0.1 in the interval
(1.5, 4); (b) the estimated histogram of RM, LM, WM, GM, EM, GGM, ΓM, GΓM, and GΓM; (c) the estimated histogram of BRM, BLM,
BWM, BGM, BEM, BGGM, BΓM, and BGΓM.
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Figure 5: ,e estimated histogram. (a) ,e histogram of the observed data with u � 0; δ � 0.5; η � 2, λ � 3 and β � 1 in the interval
(−1.5, 1.5); (b) the estimated histogram of RM, LM,WM, GM, EM, GGM, ΓM, GΓM, and GΓM; (c) the estimated histogram of BRM, BLM,
BWM, BGM, BEM, BGGM, BΓM, and BGΓM.
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Figure 6: ,e estimated histogram. (a) ,e histogram of the observed data with u � −0.3; δ � 1.5; η � 2, λ � 3 and β � 0.1 in the interval
(−4, −1.5); (b) the estimated histogram of RM, LM, WM, GM, EM, GGM, ΓM, GΓM, and GΓM; (c) the estimated histogram of BRM, BLM,
BWM, BGM, BEM, BGGM, BΓM, and BGΓM.
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Step 3: Check the convergence, if |zL(Θ)/zΘi|Θ�Θ(t)|

< 10− 4, for all 1≤ i≤ 5 under the constrains AL(Θ(t)) is
negative definite, where
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.

(66)

,en evaluate the function in (29). When the conver-
gence is not verified, then go to step 1 to update the initial
point.

Recall that since the matrix AL(Θ) be an 5 × 5 symmetric
matrix and let AkL(Θ) be the submatrix of AL(Θ) obtained
by taking the upper left-hand corner 5 × 5 submatrix of
AL(Θ). Furthermore, let Δk � det(AkL(Θ)), the kth principal
minor of AL(Θ). ,en AL(Θ) is negative definite if and only
if (−1)kΔk > 0 for k � 1, 2, 3, 4, 5. In comparison with the
standard EM algorithm, our methodology can make it simple
to evaluate the parameters β, η, and λ by maximizing the
higher bound on the data log-likelihood function as appeared
in (42), (49), and (58) separately. In the following section, we
will explain the robustness, accuracy, and effectiveness of the
proposed model, as compared with other models.

5. Experiments

We explain the proposed technique in different examina-
tions. ,e execution of BGΓM is compared with the WM
[16], RM [19], EM [14], LM [22], GM [15], GGM [25], ΓM
[1], GΓM [2], BWMM [26], BRM [27], BEM [28], BLM [22],
BGM [29, 30], BGGM [22], and BΓM [31]. To measure the
fitting precision of every model, we use the corresponding
−2 Log-likelihood (−2L) values of models fitted to data. In
general, the smaller values of (−2L), is the better fit to the
data.

5.1. Simulation Study. We generate 40000 random numbers
from BGΓMwith different parameters and bounded support
regions see Figures 4–6. ,e corresponding −2L values of
models fitted to simulated data are listed in Table 4. We find
that BGΓM is the most powerful and has the least −2L. ,e
pdf of BGΓM is monotonically increasing, decreasing,
bathtub, and upside down bathtub-shaped depending on the
parameter values and bounded support regions. So this
model is of noticeable importance for image coding and
compression applications [32, 33].

5.2. Real Data Study. We give here six real data as follows:

(1) ,e first data set arose in tests on endurance of deep
groove ball bearings which is from Lawless (1982, p.
288). ,e data set is 17.88, 28.92, 33, 41.52, 42.12,
45.6, 48.48, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64,
68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84,
127.92, 128.04, 173.40.

(2) ,e second data set of the yearly maximum wind
speed data in miles/hour, used in this study has been
quoted from Castillo (1988) [34].

(3) ,e third data set of the tensile strength of 100
observations of carbon fibers, the data was obtained
from Ref [35]. ,e data are 3.7, 2.74, 2.73, 2.5, 3.6,

Table 4: ,e corresponding −2L values of models fitted to simulated data in Figures 4–6.

Model Figure 4 Figure 5 Figure 6
LM 340369.6 127185.1 339937.1
RM 236056.8 58161.5 235563.1
GM 321759.5 93056.9 321116.7
EM 342290.4 113226.3 342259.8
GGM 328885.3 79528 327945.2
WM 172977.9 59251.4 172863.8
ΓM 496904.9 99792 497023.3
GΓM 199109.3 18948.2 199442.2
BLM 157338.1 123729.1 156760.5
BRM 132502.2 52067.8 132867
BGM 321759.5 93056.9 321116.7
BEM 89868.5 103830.2 90370.9
BGGM 189787.7 59251.4 188722.3
BWM 76569.8 78813.4 76857.7
BΓM 71019.3 63381.9 70210
BGΓM 55227.9 18944.4 55581
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Figure 7: ,e estimated histogram. (a) ,e histogram of the tests on endurance of deep groove ball bearings; (b) the estimated histogram of
RM, LM,WM,GM, EM,GGM, ΓM,GΓM, andGΓM; (c) the estimated histogram of BRM, BLM, BWM, BGM, BEM, BGGM, BΓM, and BGΓM.
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Figure 8: ,e estimated histogram. (a) ,e histogram of the yearly maximum wind speed data; (b) the estimated histogram of RM, LM,
WM, GM, EM, GGM, ΓM, GΓM, and GΓM; (c) the estimated histogram of BRM, BLM, BWM, BGM, BEM, BGGM, BΓM, and BGΓM.
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Figure 9: ,e estimated histogram. (a) ,e histogram of the tensile strength of 100 observations of carbon fibers; (b) the estimated
histogram of RM, LM, WM, GM, EM, GGM, ΓM, GΓM, and GΓM; (c) the estimated histogram of BRM, BLM, BWM, BGM, BEM, BGGM,
BΓM, and BGΓM.
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Figure 10: ,e estimated histogram. (a) ,e histogram of the survival times of 121 patients with breast cancer; (b) the estimated histogram
of RM, LM, WM, GM, EM, GGM, ΓM, GΓM, and GΓM; (c) the estimated histogram of BRM, BLM, BWM, BGM, BEM, BGGM, BΓM, and
BGΓM.
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Figure 11: Approximation of the wavelet coefficients. (a) “Leleccum.wav”(leleccum (1 : 3920)); (b) approximation of the wavelet coefficient
(db1, CD, level 1) of “leleccum.wav;” (c) the estimated histogram of RM, LM, WM, GM, EM, GGM, ΓM, GΓM, and GΓM; (d) the estimated
histogram of BRM, BLM, BWM, BGM, BEM, BGGM, BΓM, and BGΓM.
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Figure 12: Approximation of the wavelet coefficients. (a) ,e original image (lena); (b) the wavelet coefficient (db4, CD, level 1) of lena
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3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69,
3.28, 3.09, 1.87, 3.15, 4.9, 3.75, 2.43, 2.95, 2.97, 3.39,
2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.2, 3.33, 2.55,
3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38,
2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98,
2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73,
1.59, 2, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18,
3.51, 2.17, 1.69, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85,
1.61, 2.79, 4.7, 2.03, 1.8, 1.57, 1.08, 2.03, 1.61, 2.12,
1.89, 2.88, 2.82, 2.05, 3.65.

(4) ,e fourth data set of the survival times of 121
patients with breast cancer, the data was obtained
from Ref [36].

(5) In this part “Leleccum.wav”(leleccum (1 : 3920)) is
disintegrated into three high-pass subbands (CH,
CV, CD) and one low-pass subband (CA). ,e
Daubechies channel bank (db1) is used. ,e fifth
data set is the approximation of the wavelet coeffi-
cient (db1, CD, level 1) of “leleccum.wav” in the
interval (−20.32, 20.32).

(6) ,e wavelet approximation coefficient is an essential
issue in computer vision as it assumes an important
part in an extensive range of applications. ,e image
of (lena) is decomposed into three high-pass sub-
bands (CH, CV, CD) and one low-pass subband
(CA). ,e Daubechies filter bank (db4) is used. ,e
sixth data set is the wavelet coefficients of the high-
pass subband (CD), level 1 in the interval (−0.5, 0.5).

,e histogram for all real sets and their estimated pdfs
for the fitted models are displayed in Figure 7–12. ,e
corresponding −2L values of models fitted to real data are
listed in Table 5. ,erefore, the proposed model provides a

better fit to these data and has the least −2L.Secondly, if we
compare the power of our model with modified generalized
gamma distribution (MGG) having 6-parameters defined
and studied in [12] on real data 3, we have −2L � 280.608
and −2L � 282.692, respectively. Hence, BGΓM is high
flexible than MGG for this data. Furthermore, we compare
McDonald log-logistic distribution (McLL) [36] with our
model BGΓM. ,e model selection is carried out using the
following statistics: AIC (Akaike information criterion),
CAIC (consistent Akaike information criterion), and BIC
(Bayesian information criterion). ,e corresponding values
of models fitted to real data 4 are listed in Table 6. We find
that BGΓM is more flexible than McLL in this case.

6. Conclusions

A bounded generalized Gamma model with five parameters,
whose hazard function can be monotonically increasing,
decreasing, bathtub, and upside down bathtub-shaped
depending on the parameter values, has been introduced and
studied. Some mathematical and statistical properties of the
new model are investigated. We estimate the model pa-
rameters using maximum log-likelihood function and find a
closed form of some parameters by the Newton Raphson
method. ,e predictive ability of our model is found to be
comparable or superior to widely accepted distributions.,e
performance of the model has the smallest −2L values. A
simulation study was carried out to evaluate the predictive
ability of our model to fit any kind of data with bounded
support regions and compare it with other distributions.,e
power of the new model is illustrated by means of appli-
cation to six real data sets. ,e BGΓM performs significantly
better than the others distributions when sample sizes are

Table 5: ,e corresponding −2L values of models fitted to real data in Figures 7–12.

Model Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12
LM 231.689 372.636 294.201 1202.9 2054.7969 1622.7872
RM 258.488 445.485 311.805 1343.8 12980.3354 20236.904
GM 230.955 396.412 285.541 1204.7 6672.0221 10248.145
EM 231.691 372.636 294.201 1202.9 1597.1747 1.4026
GGM 231.743 370.125 285.727 1201.7 4469.5735 1.6748
WM 230.41 415.379 287.88 1202.2 7595.6214 534.9312
ΓM 305.696 373.761 314.142 1218.7 3552.8825 739.3194
GΓM 257.824 441.071 421.314 1198.6 1557.8015 440.4421
BLM 225.714 343.052 282.126 1152 2020.3745 1294.9581
BRM 224.418 343.064 285.874 1154.8 20206.6427 20527.3021
BGM 224.632 343.072 281.674 1155 6672.0221 10248.145
BEM 225.714 343.052 282.098 1156.6 1597.168 881.9213
BGGM 232.148 342.794 328.575 1154.9 2104.6441 1361.9667
BWM 224.164 432.44 279.486 1155.7 3551.7368 515.5414
BΓM 245.613 346.724 296.563 11741.7 1557.7918 626.7688
BGΓM 223.82 342.289 280.608 1151.3 1493.2769 366.1614

Table 6: ,e corresponding AIC, BIC, and CAIC on real data 4.

Model AIC BIC CAIC
BGΓM 1161.308 1175.288 1161.831
McLL 1164.661 1178.64 1165.183
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small. ,us, it is less affected by sample size and is more
robust. Also the accuracy of the proposed model for wavelet
histogram fitting of image and sound is high. We hope that
this model may attract wider applications on themodeling of
the probability density function of the data via BGΓD in
video coding and image denoising as a future work.
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