

بسم الله الرحمن الرحيم

000000

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المطومات دون أدنى

مسئولية عن محتوى هذه الرسالة.

	ملاحظات:
خامعا بجت في ممنى	
C AIN SHAMS UNIVERSITY	
since 1992	

فبركات وتكنونوجب اله

EARLY ARCHITECTURE DESIGN QUALITY OPTIMIZATION USING BIM

By

Reem Mustafa AbdelAziz Mustafa

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in Architectural Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

EARLY ARCHITECTURE DESIGN QUALITY OPTIMIZATION USING BIM

By Reem Mustafa AbdelAziz Mustafa

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in Architectural Engineering

Under the Supervision of

Prof. Dr. Sherine Mohy Eldin Wahba

Prof. Dr. Ayman Hassan Ahmed Mahmoud

.....

.....

Professor of Architectural Design Department of Architectural Engineering Faculty of Engineering, Cairo University Professor of Architectural Design Department of Architectural Engineering Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

EARLY ARCHITECTURE DESIGN QUALITY **OPTIMIZATION USING BIM**

By Reem Mustafa AbdelAziz Mustafa

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE** in **Architectural Engineering**

Approved by the **Examining Committee**

Prof. Dr. Sherine Mohy Eldin Wahba

Thesis Main Advisor**

Prof. Dr. Ayman Hassan Ahmed

Advisor**

A. Prof. Tarek Nasr Eldin Ibrahim

Prof. Dr. Ayman Fathallah Wanas, Prof. of Architecture Arab academy of Science and Technology

External Examiner**

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

Internal Examiner**

Engineer's Name: Date of Birth: Nationality: E-mail: Phone: Address:	Reem Mustafa AbdelAziz Mustafa 15/11/1992 Egyptian Reem-mustafaa@live.com 01111572520 21 st Taha Hussein street, Haram district, Giza, Egypt	
Awarding Date: Degree:	/ / 2021 (Master of Science)	
Department:	Architecture Engineering	
Supervisors:	Prof. Sherine Mohy Eldin Wahba	

Prof. Sherine Mohy Eldin Wahba Prof. Ayman Hassan Ahmed

Examiners:

Prof. Sherine Mohy Eldin Wahba (Thesis main advisor)
Prof. Ayman Hassan Ahmed Mahmoud (advisor)
Prof. Tarek Nasr Eldin Ibrahim (Internal examiner) Asst. prof. at faculty of Engineering-Cairo University
Prof. Ayman Fathallah Wanas (External examiner) Prof. at Arab Academy for Science and Technology

Title of Thesis:

EARLY ARCHITECTURE DESIGN QUALITY OPTIMIZATION USING BIM

Key Words: (must be 5 words only)

Early architecture design, BIM, design quality optimization, design quality guidelines, design assessment

Summary: (not more than 150 word and the summary must be in the same page)

Architecture design quality is highly dependent on optimizing the early phases of the design process. For this purpose, it's important to identify the quality guidelines that could optimize architecture quality while being attainable at such early phases. Building information modeling (BIM) can easily contribute to optimizing early architecture design while providing a solution to the design challenges faced at the early design phases. Therefore, this thesis aims at maximizing the role of BIM in optimizing the architecture design process in the early phases; by providing a framework that clarifies the possible BIM contributions and potentials.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Reem Mustafa AbdelAziz Mustafa Date: / /2021

Signature:

Acknowledgments

First of all, I would like to thank my **parents** for their continuous support and sacrifices so that I can be the person I am today and be able to finish this work.

I am deeply grateful to my supervisors, **Prof. Sherine Wahba** and **Prof. Ayman Hassan**, who have supported me with every possible way offering guidance and knowledge that have helped me all along the way.

Nevertheless, completing this thesis would have never been possible without the assistance of **Prof. Aly Gabr** and **Prof. Mohamed Anwar**. Their continuous support and care has been always present, all along the way, while working on this thesis. I could never thank them enough for their efforts and guidance; and most of all, for always being there to provide help and support whenever I needed.

Table of Contents

CHAPTE	R 1: INTRODUCTION	1
1.1 BACK	GROUND	1
1.2 OBSEI	RVATIONS	4
1.2.1	Position of BIM in the AEC industry	4
1.2.2	Position of BIM in the architecture design practice	5
1.2.3	Availability of quality guidelines for the early architecture design phases	6
1.3 PROB	LEM IDENTIFICATION	6
1.4 RESEA	ARCH AIM AND OBJECTIVES	7
1.5 RESEA	ARCH QUESTIONS	8
1.6 METH	ODOLOGICAL FRAMEWORK	8
СНАРТЕ	R 2: QUALITY IN ARCHITECTURE DESIGN PROCESS	12
2.1 INTRO	DDUCTION	12
2.2 AN OV	VERVIEW OF THE ARCHITECTURE DESIGN PHASES	12
2.2.1	Definitions and phases of the AEC process	12
2.2.2	Definition and phases of the architecture design process	16
2.2.3	Understanding the "Early Architecture Design Phases"	18
	2.2.3.1 Characteristics of the "Early Architecture Design Phases"	19
	2.2.3.2 Challenges of the "Early Architecture Design Phases"	21
2.3 QUAL	ITY DEFINITIONS WITHIN THE ARCHITECTURE DESIGN	
PHAS	ES	22
2.4 EXIST	ING INTERNATIONAL "ARCHITECTURE DESIGN QUALITY	
ASSES	SSMENT SYSTEMS"	24
2.4.1	Definitions of "Architecture Design Quality Assessment Systems"	24
2.4.2	Examples of "Architecture Design Quality Assessment Systems"	25
	2.4.2.1 LEED	25
	2.4.2.2 BREEAM	26
2.4.3	Potentials and limitations of "Architecture Design Quality Assessment Systems"	27
2.5 POSSI	BILITY OF GENERATING "QUALITY GUIDELINES FOR EARLY	30
ARCH	ITECTURE DESIGN PHASES"	50
2.5.1	Possibility of early design quality assessment	31
2.5.2	Process of early design quality assessment	32
2.5.3	Components of "Early Architecture Design Quality Guidelines"	33
2.6 IDENT	TIFYING QUALITY CATEGORIES FOR THE EARLY ARCHITECTURE	21
DESIG	N PHASES	74
2.6.1	The US. General service administration (GSA)	34
2.6.2	Building sustainability assessment methods (BSAMs)	35
2.6.3	Resulting quality categories for early architecture design phases	37
2.7 IDENT	TIFYING QUALITY CRITERIA AND INDICATORS FOR THE EARLY	20
ARCH	ITECTURE DESIGN PHASES	٥ð
2.7.1	Space efficiency criteria in early architecture design phases	39
2.7.2	Circulation efficiency criteria in early architecture design phases	43
2.7.3	Energy efficiency criteria in early architecture design phases	45

2.7.4.1 Early LCC estimation 2.7.4.2 Data required for LCC estimation 2.8 CONCLUSION OF THE GENERATED "EARLY ARCHITECTURE DESIGN QUALITY GUIDELINES" FOR OPTIMIZING ARCHITECTURE DESIGN. 1.1 CHAPTER 3: AN INSIGHT ON BIM APPLICATIONS IN THE ARCHITECTURE DESIGN PROCESS. 3.1 3.1 INTRODUCTION. 3.2 UNDERSTANDING BIM. 3.2.1 BIM definitions as part of the AEC practice. 3.2.2 BIM dimensions offered to the AEC practice. 3.3.1 THE ROLE OF COMPUTER IN THE AEC PRACTICE. 6 3.3.1 Traditional CAD and BIM evolution within the AEC industry. 6 3.3.3 Functions of BIM software in the AEC practice. 6 3.4 BIM CONTRIBUTION TO THE AEC PRACTICE. 6 3.4.1 Potentials of BIM in the AEC practice. 6
2.8 CONCLUSION OF THE GENERATED "EARLY ARCHITECTURE DESIGN QUALITY GUIDELINES" FOR OPTIMIZING ARCHITECTURE DESIGN CHAPTER 3: AN INSIGHT ON BIM APPLICATIONS IN THE ARCHITECTURE DESIGN PROCESS
2.8 CONCLUSION OF THE GENERATED "EARLY ARCHITECTURE DESIGN QUALITY GUIDELINES" FOR OPTIMIZING ARCHITECTURE DESIGN CHAPTER 3: AN INSIGHT ON BIM APPLICATIONS IN THE ARCHITECTURE DESIGN PROCESS
CHAPTER 3: AN INSIGHT ON BIM APPLICATIONS IN THE ARCHITECTURE DESIGN PROCESS. 3.1 INTRODUCTION. 3.2 UNDERSTANDING BIM. 3.2.1 BIM definitions as part of the AEC practice. 3.2.2 BIM dimensions offered to the AEC practice. 3.2.3 BIM levels of data (LOD) within the AEC practice. 3.3 THE ROLE OF COMPUTER IN THE AEC PRACTICE. 3.3.1 Traditional CAD and BIM evolution within the AEC industry. 3.3.2 Traditional CAD and BIM software in the AEC practice. 3.3.3 Functions of BIM software in the AEC practice. 3.4 BIM CONTRIBUTION TO THE AEC PRACTICE. 3.4 BIM contrails of BIM in the AEC practice.
CHAPTER 3: AN INSIGHT ON BIM APPLICATIONS IN THE ARCHITECTURE DESIGN PROCESS. 3.1 INTRODUCTION. 3.2 UNDERSTANDING BIM. 3.2.1 BIM definitions as part of the AEC practice. 3.2.2 BIM dimensions offered to the AEC practice. 3.2.3 BIM levels of data (LOD) within the AEC practice. 3.3 THE ROLE OF COMPUTER IN THE AEC PRACTICE. 3.3.1 Traditional CAD and BIM evolution within the AEC industry. 3.3.2 Traditional CAD and BIM available software 3.3.3 Functions of BIM software in the AEC practice. 3.4 BIM CONTRIBUTION TO THE AEC PRACTICE. 3.4 I Potentials of BIM in the AEC practice.
3.1 INTRODUCTION. 9 3.2 UNDERSTANDING BIM. 9 3.2.1 BIM definitions as part of the AEC practice. 9 3.2.2 BIM dimensions offered to the AEC practice. 9 3.2.3 BIM levels of data (LOD) within the AEC practice. 9 3.3 THE ROLE OF COMPUTER IN THE AEC PRACTICE. 6 3.3.1 Traditional CAD and BIM evolution within the AEC industry. 6 3.3.2 Traditional CAD and BIM available software 6 3.3.3 Functions of BIM software in the AEC practice. 6 3.4 BIM CONTRIBUTION TO THE AEC PRACTICE. 6 3.4.1 Potentials of BIM in the AEC practice. 6
3.2 UNDERSTANDING BIM
3.2 UNDERSTANDING BIM. 3.2.1 3.2.1 BIM definitions as part of the AEC practice. 3.2.2 BIM dimensions offered to the AEC practice. 3.2.3 BIM levels of data (LOD) within the AEC practice. 3.2.3 The ROLE OF COMPUTER IN THE AEC PRACTICE. 3.3.1 Traditional CAD and BIM evolution within the AEC industry. 3.3.2 Traditional CAD and BIM available software . 3.3.3 Functions of BIM software in the AEC practice . 3.4 BIM CONTRIBUTION TO THE AEC PRACTICE. 3.4.1 Potentials of BIM in the AEC practice .
3.2.1 BIM definitions as part of the AEC practice
3.2.2 BIM dimensions offered to the AEC practice 9 3.2.3 BIM levels of data (LOD) within the AEC practice 9 3.3 THE ROLE OF COMPUTER IN THE AEC PRACTICE 9 3.3.1 Traditional CAD and BIM evolution within the AEC industry 9 3.3.2 Traditional CAD and BIM available software 9 3.3.3 Functions of BIM software in the AEC practice 9 3.4 BIM CONTRIBUTION TO THE AEC PRACTICE 9 3.4.1 Potentials of BIM in the AEC practice 9
3.3 THE ROLE OF COMPUTER IN THE AEC PRACTICE. (4) 3.3.1 Traditional CAD and BIM evolution within the AEC industry. (4) 3.3.2 Traditional CAD and BIM available software (4) 3.3.3 Functions of BIM software in the AEC practice (4) 3.4 BIM CONTRIBUTION TO THE AEC PRACTICE. (4) 3.4.1 Potentials of BIM in the AEC practice (4)
3.3.1 Traditional CAD and BIM evolution within the AEC industry
3.3.1 Traditional CAD and BIM evolution within the AEC industry 3.3.2 Traditional CAD and BIM available software 3.3.3 Functions of BIM software in the AEC practice 3.4 BIM CONTRIBUTION TO THE AEC PRACTICE. 3.4.1 Potentials of BIM in the AEC practice
3.3.2 Functional CAD and DRV available software 3.3.3 Functions of BIM software in the AEC practice 3.4 BIM CONTRIBUTION TO THE AEC PRACTICE. 3.4.1 Potentials of BIM in the AEC practice.
3.4 BIM CONTRIBUTION TO THE AEC PRACTICE
3.4.1 Potentials of BIM in the AEC practice
3.4.2 BIM challenges in the AEC practice
3.4.2.1 Barriers linked to the BIM product
3.4.2.2 Barriers linked to the BIM process
3.4.2.3 Barriers linked to the people using BIM
3.5 BIM CONTRIBUTION TO THE EARLY ARCHITECTURE DESIGN
3.5.1 Potentials of BIM in early architecture design optimization
3.5.2 BIM challenges in early architecture design optimization
3.6 CLASSIFICATION OF BIM CONTRIBUTION TO EARLY ARCHITECTURE
DESIGN OPTIMIZATION
3.6.1 BIM hierarchy of contribution to early architecture design optimization
3.6.2 BIM strategy of contribution to early architecture design optimization
3.6.2.1 BIM-based basic design support
3.6.2.2 BIM-based interactive design support
3.6.2.4 BIM-based model checking (BMC)
3.7 CONCLUSION OF THE CLASSIFICATION OF BIM CONTRIBUTION TO
DESIGN OF THE CLASSIFICATION OF DIM CONTRIBUTION TO
DESIGN QUALITY OF HIMIZATION THE EARLY ARCHITECTURE DESIGN 2
CHADED 4. EDAMEWODK FOD LITHIZING DIM IN FADIX
ADCHITECTUDE DESIGN OUAL ITV OPTIMIZATION
4 1 INTRODUCTION
4.2 UNDERSTANDING OUALITY CATEGORIES OF THE GENERATED "FARLY
ARCHITECTURE DESIGN QUALITY GUIDEUNES"
A 3 GENERATING MEASURABLE OUALITY INDICATORS FOR FARLY
ARCHITECTURE DESIGN
A 3.1 Quantitative criteria for space design efficiency in early prohitecture design
4.3.2 Quantitative criteria for circulation design efficiency in early architecture design
4.3.3 Quantitative criteria for energy design efficiency in early architecture design

	4 DESIGN OPTIMIZATION USING BIM IN THE EARLY ARCHITECTURE	. .
	DESIGN PHASES FOR SUBJECTIVE DESIGN CATEGORIES ¹	01
	4.4.1 Role of BIM in optimizing space design in early architecture design phases	02
	4.4.1.1 Interactive spatial design analysis and assessment applications 1	04
	4.4.1.2 Interactive generative spatial design applications 1	06
	4.4.1.3 Generating a list of BIM contributions to spatial design optimization in the early architecture design phases	09
	4.4.2 Role of BIM in optimizing circulation design in early architecture design phases 1	15
	4.4.2.1 Interactive circulation design analysis and assessment applications 1	15
	4.4.2.2 Interactive generative circulation design applications	16 17
4.5	DESIGN OPTIMIZATION USING BIM IN THE EARLY ARCHITECTURE	
	DESIGN PHASES FOR OBJECTIVE DESIGN CATEGORIES ¹	22
	4.5.1 Role of BIM in optimizing energy design in early architecture design phases	22
	4.5.2 Role of BIM in optimizing cost design in early architecture design phases	32
4.6	CONCLUSION OF THE CONTRIBUTION OF BIM TO DESIGN OUALITY	-
	OPTIMIZATION WITHIN THE EARLY ARCHITECTURE DESIGN PHASES: A	
	FRAMEWORK 1	35
CH	PTER 5: EARLY ARCHITECTURE DESIGN OPTIMIZATION	
ME	HODOLOGIES USING BIM: RESEARCH INVESTIGATION	43
5.1.	INTRODUCTION 1	43
5.2.	FRAMEWORK TESTING METHODOLOGY 1	43
5.3.	SURVEY POPULATION AND TARGETED SAMPLING 1	43
	5.3.1 Type of sampling 1	44
	5.3.2 The population of the sample 1	44
	5.3.3 Size of the sample 1	45
	5.3.4 Location of the sample 1	47
5.4.	QUESTIONNAIRE DESIGN TO TEST GENERATED FRAMEWORK 1	47
	5.4.1 Proposed questionnaire design and development 1	47
	5.4.1.1 Types of questions 1	47
	5.4.1.2 Sequence of questions 1	48
	5.4.1.3 Covering letter of the questionnaire 1	48
	5.4.2 Pre-testing the questionnaire 1	49
5.5.	ANALYSIS AND PRESENTATION OF RESULTS 1	49
	5.5.1 Analysis of results of the first survey targeting architecture professors 1	51
	5.5.1.1 Design categories of "Early Architecture Design Quality Guidelines" 1	51
	5.5.1.2 Design criteria of the generated categories	52
	5.5.1.3 Quality indicators of the generated criteria	53
	5.5.1.4 Quantitative indicators of quality for the generated criteria	57
	5.5.2 Analysis of results of the second survey targeting BIM practitioners 1	58
5.6.	CUNCLUSION	60 65
CHA	PTER 6: CONCLUSIONS AND RECOMMENDATIONS 1	63
0.1.		63
6.2.	KE-GENERATING THE FRAMEWORK 1	63
6.3.	CONCLUSION 1	67
	6.3.1. Conclusion of the theoretical part	67
	6.3.1.1. Generated "Early Architecture Design Quality Guidelines" 1	67

	6.3.1.2.	Role of BIM in optimizing design quality in early architecture design phases	168
6.3.2.	Conclu	sion of the analytical part	168
	6.3.2.1.	Initial generated framework of "Early Architecture Design Quality Optimization using BIM"	168
	6.3.2.2.	validating the initial framework	169
	6.3.2.3.	Re-generated framework of "Early Architecture Design Quality Optimization using BIM"	170
DISC	USSIO	N	170
6.3.3.	Analyz	ing BIM contribution to "Early architecture design quality guidelines"	171
6.3.4.	Analyz	ing the classification of the role of BIM in optimizing design quality in the	
	early a	chitecture design phases	175
RECO	MMEN	DATIONS	178
LIMIT	ATION	IS	178
6.6.1.	Limitat	ions of the framework	178
6.6.2.	Limitat	ions of the research	179
FUTU	RE RES	SEARCHES	179
RENCE	S		180
NDIX: .	A		191
	6.3.2. DISC 6.3.3. 6.3.4. RECO LIMIT 6.6.1. 6.6.2. FUTU RENCE NDIX: .	6.3.1.2. 6.3.2. Conclu 6.3.2.1. 6.3.2.2. 6.3.2.3. DISCUSSION 6.3.3. Analyz 6.3.4. Analyz early an RECOMMEN LIMITATION 6.6.1. Limitat 6.6.2. Limitat FUTURE RES RENCES NDIX: A	 6.3.1.2. Role of BIM in optimizing design quality in early architecture design phases

List of Figures

Figure 1.1: The difference between cost of design changes and work load distribution in
"front loaded design process" and "traditional design process"
Figure 1.2: Coordination of tasks offered by BIM to the AEC process all along the
project's phases
Figure 1.3: Search rates on BIM technologies via Google search engine in 2021 [9]4
Figure 1.4: BIM usage and awareness graph in UK
Figure 1.5: BIM adoption over time in the AEC industry. UK
Figure 1.6: Common BIM intervention within an AEC project 7
Figure 1.7: Optimum BIM intervention within an AEC project
Figure 1.8: Research aim and objectives
Figure 1.9: Methodological framework of the thesis structure
Figure 21: Difference of workflow between Traditional and collaborative AEC
processes
Figure 2.2: AEC project phases diagram
Figure 2.2: Cost and work load of design changes in an AEC project along its life time
Figure 2.5. Cost and work load of design changes in an AEC project along its me time
Figure 2.4: Costs during a whole AEC project20
Figure 2.5: Illustration of the research's scope of optimizing Architecture Design Quality in the early Architecture design phases
Figure 2.6: GSA model of early architecture design assessment workflow for early design
ontimization 33
Figure 2.7: BSAMs Model for assessing design quality at the architecture design phases
righte 2.7. Distants model for assessing design quanty at the architecture design phases
Figure 2.8: Illustration of the research's scope of optimizing Architecture Design Quality
in the early Architecture design phases by targeting the four main early design
assessment categories
Figure 2.9: Data criteria required for conducting LCC estimation 51
Figure 2.1: DIM definitions in the literature
Figure 3.1: Drivi definitions in the interature
the well type
Eigure 2.2: clash detection with different severity grades according to the pipe diameter
Figure 5.5. clash detection with different sevency grades according to the pipe diameter
Eigune 4.1. Illustration of the contennaint of the space and the view angle
Figure 4.1: Infustration of the center point of the space and the view angle
Figure 4.2: Circulation simplicity data in BIM showing number and angles of turns of
$= 42 \text{ path} [\dots 98]$
Figure 4.3: Path environment data in BIM showing distance, volume of path and window
sizes
Figure 4.4: Example of data derived from BIM containing the characteristics of space
and circulation elements
Figure 4.5: A basic design presented through BIM software104
Figure 4.6: Example of a space and circulation validation using Solibri software to
compare two design alternatives
Figure 4.7: "Space plan generator tool" interface while generating spatial plans108
Figure 4.8: Dynaspace interface when viewing a bubble diagram and applying design
constraints on it to transform it into spatial relations109
Figure 4.9: Packing strategies using space planning mode in "Refinery toolkit" to
generate different plan arrangements

Figure 4.10: Visibility analysis from different points in space using Space planning mode
In "Refinery toolkit"
its orientation 124
Figure 4.12: Design alternatives generated using "Three box massing tool" within Revit
Figure 4 13: Daylight simulation interface in Revit 2021
Figure 4.14: Sefaira plugin in Revit 2021 performing daylight penetration simulation
Figure 4.15: Insight plugin in Revit 2021 interface analyzing PV potential design locations
Figure 4.16: Sefaira plugin for Revit interface showing energy performance, daylight analysis, and design materials efficiency
Figure 5.1: Ratio between number of respondents of the first survey targeted sample 146 Figure 5.2: Ratio between number of respondents of the second survey targeted sample 147
Figure 5.3: The 4 levels of the framework analysis
Figure 5.4: Respondents agreement on the validity of the four Design categories for assessing early architecture design quality
Figure 5.5: Respondents agreement on the validity of the design quality criteria of the 4
generated design categories for assessing early design quality152
Figure 5.6: Respondents agreement on the validity of the indicators of the quality criteria for space design category
Figure 5.7: Respondents agreement on the validity of the Quality indicators of the quality criteria for Circulation design category
Figure 5.8: Respondents agreement on the validity of the Quality indicators of the quality criteria for Energy design category
Figure 5.9: Respondents agreement on the validity and sufficiency of the elements within
each data criteria to conduct an efficient LCC analysis
Figure 5.10: Respondents agreement on the validity of expressing quality indicators of Space and circulation design categories with quantitative indicators
Figure 5.11: Respondents opinions regarding the BIM role of contribution to the generated design categories for enhancing early design quality
Figure 6.1: Re-generated framework of "Early Architecture Design Optimization using BIM" according to added weights
Figure 6.2 : Framework's weights structure to illustrate the methodology of calculating the impact factor of BIM contribution to each design category, and overall early architecture design
Figure 6.3: BIM impact factors on optimizing the 4 Early Architecture Design categories
Figure 6.4: BIM impact factors on optimizing the 4 Early Architecture Design categories taking the weight of categories in affecting early architecture design into consideration
Figure 6.5: Contribution of each BIM Strategies to optimizing Early Architecture Design categories
Figure 6.6: Contribution of each BIM tool to optimizing Early Architecture Design categories (Space, Circulation, Energy)
Figure 6.7: Contribution of each BIM Hierarchy to optimizing Early Architecture Design categories

List of Tables

Table 2.1: Early architecture design phases' challenges	21
Table 2.2: LEED certificate quality categories [33]	
Table 2.3: BREEAM certificate quality categories [33] [35]	27
Table 2.4: Assessment categories of the generated "Early Architecture Design	n Quality
Guidelines"	
Table 2.5: Design criteria and quality indicators, for "Early Architecture Design	n Quality
Guidelines", to achieve efficient spatial design	
Table 2.6: Recommendations for optimizing horizontal circulation design quali	ty44
Table 2.7: Design criteria and quality indicators, for "Early Architecture Design	n Quality
Guidelines", to achieve efficient horizontal circulation design	45
Table 2.8: Design criteria of the "Early Architecture Design Quality Guide	elines" to
optimize energy design.	46
Table 2.9: Design guidelines and quality indicators, for "Early Architecture	e Design
Quality Guidelines", to achieve efficient total energy performance	
Table 2.10: Data required for conducting an efficient LCC estimation at the ear	ly design
phases	51
Table 2.11: Concluded "Early Architecture Design Quality Guidelines" for op	ptimizing
design quality in early architecture design phases	52
Table 3.1: Overview of the most popular BIM software available in the AEC pre-	actice [3]
	63
Table 3.2: The five task categories for BIM software functions in the AEC proc	ess [101]
	64
Table 3.3: BIM functions/capabilities within the AEC practice [89]	64
Table 3.4: BIM benefits to the AEC process [103] [3]	66
Table 3.5: BIM utilization challenges in the Early Architecture Design phases	73
Table 3.6: Examples for BIM-based (basic and interactive) design support tools	for early
architecture design optimization	80
Table 3.7: BPS software characteristics and comparison [139]	
Table 3.8: Model checking concepts in BMC software [141]	85
Table 3.9: BMC software and their functions [140]	
Table 3.10: BIM strategies, tools and hierarchy of contribution early architectu	re design
quality optimization	
Table 4.1: Early architecture design quality optimization categories a	ind their
Table 4.2: Space design qualitative and quantitative quality indicators i	tor early
architecture design quality optimization	
Table 4.3: Circulation qualitative and quantitative quality indicators for early arc	nitecture
design quality optimization	
Table 4.4: Energy quantitative and quantative quanty indicators for early arc	
Table 4.5. DIM tools utilized in anotial design antimization at the apply design	
Table 4.5. Bit tools utilized in spatial design optimization at the early design optimization at the early design optimization at the strategy and hierarchy as listed before in table 2	$\frac{10}{10}$
Table 4.6. Role of RIM in optimizing space design quality in the carly design	n phases
hased on quantitative values	112
Table 4.7: BIM tools utilized in circulation design optimization at the early design	$\dots \dots 112$
classified according to the strategy and hierarchy as listed before in table 2	311 pilases
crassified according to the strategy and meratery as listed before in table 3	,

Table 4.8: Role of BIM in optimizing circulation design quality in the early design phases
based on quantitative values119
Table 4.9: Role of BIM in optimizing Energy design quality in the early design phases
based on quantitative values129
Table 4.10: List of LCC estimation data required at the early design phases and can be
derived from BIM133
Table 4.11: Role of BIM in facing the challenges of LCC estimation in early design
phases
Table 4.12: Generated framework for "Early Architecture Design Quality Optimization
using BIM"135
Table 4.13: Percentages of contribution of BIM (based on hierarchy and strategy) to each
design category as concluded from the initial framework141
Table 5.1: First survey population of architecture design professors in greater Cairo.144
Table 5.2: Second survey's list of most popular Architecture firms/offices in Cairo that
utilize BIM in architecture design145
Table 5.3: First survey targeted sample and actual respondents 145
Table 5.4: Second survey targeted sample and actual respondents 146
Table 5.5: weights assigned to the framework based on the survey's responses
percentages150
Table 5.6: weights concluded from survey to validate the generated framework162
Table 6.1: Impact factors of BIM contribution to the 4 design categories of the "Early
Architecture Quality Guidelines" through each of the 7 classified tools of
contribution166
Table 6.2: Calculated impact factors for BIM contribution to each design categories in
general and in early architecture design optimization166