

بسم الله الرحمن الرحيم

000000

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المطومات دون أدنى

مسئولية عن محتوى هذه الرسالة.

	ملاحظات:
خامعا بجت في ممنى	
C AIN SHAMS UNIVERSITY	
since 1992	

فبركات وتكنونوجب اله

Experimental Study of the Effect of Lyophilized Platelet Growth Factors on Healing of Critical Size Defect in Craniofacial Bone

Thesis

Submitted for Partial Fulfillment of M.D. Degree in Plastic, burn and maxillofacial surgery

> Presented by Obada Mohamed Elsamadony

> > Under Supervision of

Prof. Dr. Amr Abdelwhab Reda Mabrouk

Professor of Plastic, burn and maxillofacial surgery Faculty of Medicine- Ain Shams University

Prof. Dr. Hossam Mostafa Fahmy

Professor of Clinical Pathology Faculty of Medicine- Ain Shams University

Prof. Dr. Manal Hassan Moussa

Professor of Histology Faculty of Medicine- Ain Shams University

Prof. Dr. Mohamed Ahmed Sayed Mostafa El-Rouby

Professor of Plastic, burn and maxillofacial surgery Faculty of Medicine- Ain Shams University

Prof. Dr. Iman Nagy Nageb

Assistant Professor of Plastic, burn and maxillofacial surgery Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Amr Abdelwhab Reda Mabrouk,** Professor of Plastic Surgery, Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Hossam Mostafa Fahmy**, Professor of Clinical Pathology, Faculty of Medicine- Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Prof. Dr. Manal Hassan Moussa**, Professor of Histology, Faculty of Medicine- Ain Shams University, for her great help, active participation and guidance.

I wish to introduce my deep respect and thanks to **Prof. Dr. Mohamed Ahmed Sayed Mostafa El-Rouby,** Professor of Plastic Surgery, Faculty of Medicine- Ain Shams University, for his kindness, supervision and cooperation in this work.

I am deeply grateful for **Prof. Dr. Iman Magy Mageb**, Assistant Professor of Plastic Surgery, Faculty of Medicine⁻ Ain Shams University, for her valuable help and guidance.

&bada Mohamed

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	v
Introduction	1
Aim of the Work	5
Review of Literarture	
Anatomy of craniofacial bone	6
Healing of craniofacial bone	21
Critical Size Defect (CSD) of craniofacial bone	27
Demineralized Bone Matrix (DBM)	
Growth Factors (GF)	37
Patients and Methods	43
Results	58
Discussion	
Summary and Conclusion	
References	
Arabic Summary	—

List of Tables

Table No.	Title	Page No.
Table (1):	Comparison between study g regarding palpation, mobility pressure and integration with surrounding bone.	roups with the
Table (2):	Gross evaluation score	
Table (3):	Comparison between study g regarding radiological extent of healing.	roups bone 67
Table (4):	Comparison between study g regarding radiological bridging of defect	roups f the 68
Table (5):	Histological evaluation; Compa between study groups regarding ty tissue healing as regard:	arison pe of

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Lateral aspect of the skull	6
Figure (2):	Anterior aspect of the skull	
Figure (3):	Inferior aspect of the skull	
Figure (4):	Anatomy of human calvarium (a) neonate (b)	adult 13
Figure (5):	Ossification centers in a calvarium 10 weeks f	fetus14
Figure (6):	Anatomy of the skull of neonate	
Figure (7):	Mesenchymal osteoblasts (MOBL); a) cut s defect in rabbit femur stained by Toulidine b post injury represnting MOBL surround rondomly oriented matrix. b) cut section is distraction osteogenesis in a rabbit tibia show that is surrounded by a woven bone (SOBL)	ection in a blue 1 week ded by a n a site of ving MOBL
Figure (8):	Cellular components of the bone stained chrome stain, 400 X; Osteoblasts (Ob) covers of bone matrix, Osteocytes (Oc) trapped in the Osteoclasts (OCL) a large multinucleated ce surface facet (Howship's Lacuna)	by Mallory the surface lacunae and ell lies in a
Figure (9)	Representation of fracture repair, includi factors and cytokines at each stage. BM morphogenetic protein receptor; GMCSF, g macrophage colony stimulating factor; MA against decapentaplegic; PMN, polymor leukocyte; SMA SMAD, caenorhabditis elega	Ing growth APR, bone granulocyte D, mothers rphonuclear ans protein22
Figure (10)	: The Biosafety Cabinet; BSC	
Figure (11)	: The basic surgical set used in the study	
Figure (12)	: Biopsy punch	
Figure (13)	Harvest of an 8mm circular bone from rats circular bone excised by 8mm biopsy pund intact after bone harvest. c) harvested bone measuring 8mm all around.	calvaria; a) ch. b) dura is circular 49

List of Figures

Fig. N	10.	Title	Page No.
Figure	(14): Pie	ece of extracted bone measures 8ml	
Figure	(15): T alco	he Demineralized bone scaffolds are im phol	mersed in 50
Figure	(16): Ph	osphate buffered saline	
Figure	(17): Th	e defect left without DBM or LGF	
Figure	(18): Gr	oup II the defect repaired with DBM	
Figure	(19): T aug	he defect repaired with incubated LGF mented with LGF gel foam as onlay	DBM and53
Figure	(20): On	lay gel foam above the DMB	
Figure	(21): Sh	owing the color of each group	
Figure	(22): Gr	oss evaluation of the studied groups at auto	psy59
Figure	(23): Co	mparison between study groups regarding	palpation 61
Figure	(24): Co with	omparison between study groups regarding	g Mobility 61
Figure	(25): inte	Comparison between study groups gration with the surrounding bone	regarding 62
Figure	(26): Gr	oss evaluation score	
Figure	(27): A ana	screenshot for Image J 1.47v; the softwar lysing the radiological extent of bone heali	re used for ng65
Figure	(28): Gr	oup I (bone healing)on 3d CT	
Figure	(29): Gr	oup II bone healing on 3D CT	
Figure	(30): Gr	oup III bone healing on 3D CT	
Figure	(31): Ex	tend of bone formation	
Figure	(32): Bo	ne bridging	
Figure	(33): a trab	photo-micrograph of the defect showing beculae and filled by fibrous tissue) X 100.	g no bone 69
Figure	(34): a p	hoto-micrograph of the defect edge X 400	

List of Figures

Fig.	No.	Title	Page No.
Figur	re (35):	a photo-micrograph of the defect X 100	
Figur	re (36):	a photo-micrograph of the defect X 400	
Figu	re (37)	: Group III multiple Islands of new irreglamella.	gular bone
Figu	re (38)	Areas of irregular bone trabeculae contain bone with irregular lamellae.	immature
Figu	re (39)	: Another areas showing irregular bone cor active osteoblasts indicating active healing pro	ntain many press76
Figu	re (40)	: Osteoblast show basophilic cytoplasm with nuclea	h eccentric
Figu	re (41)	Comparison between study groups regarditissue healing as regard cellularity	ng type of
Figu	re (42)	: Comparison between study groups regardi tissue healing as regard osteoplastic surface	ng type of
Figu	re (43)	Comparison between study groups regarditissue healing as regard eroded surface	ng type of
Figu	re (44)	: Comparison between study groups regardi tissue healing as regard osteoid surface	ng type of
Figu	re (45)	: Group I (small amount of cells beside tissue)	connective 86
Figur	re (46):	Group II (active cells beside the eroded surfa	ce)86
Figur	re (47):	Group III showing a huge no of active cells	
Figur	re (48):	High magnification of prev. photo showing osteoblasts with basophilic cytoplasm with nuclei	high no of eccentric

List of Abbreviations	'/
-----------------------	----

Abb.	Full term
ADSCs	Adipocytes derived stem cells
AP	Activator protein
BMPs	Bone morphogenetic proteins
b-TCP	B-tricalcium phosphate
CARE	Committee on Animal Research and Ethics
CSD	Critical size defect
DBM	Demineralized bone matrix
EGF	Epidermal growth factor
FBS	Fetal bovine serum
FGF	Fibroblast growth factor)
GFs	Growth factors
IGF	Insulin-like growth factor
LPGFS	Lyophilized platelet growth factors
MOBL	Mesenchymal osteoblasts
MSCs	Mesenchymal stem cells
Ob	Osteoblasts
Oc	Osteocytes
OCL	Osteoclasts
PC	Platelet concentrate
PGFs	Platelet growth factors
PLGA	Polylactic-co-glycolic acid
PTHrP	Parathyroid hormone-related protein
rhPDGFBB	Recombinant human PDGF-BB
TGF-β	Transforming growth factor-β
VEGF	Vascular endothelial growth factor

ABSTRACT

Background: The maxillofacial trauma and their complications represent a great socio-economic concern for the Egyptian health system. There are multiple reconstructive options are available for reconstructing the critical size defects in craniomaxillofacial field. The reconstruction of the critical sized defects by autografts is considered the golden standard. They offer minimum immunological rejection, complete histocompatibility and can provide the best osteoinductive, osteoconductive and osteogenicproperties. With the continued growth of cell therapy applications being used in clinical medicine and within operative plastic and reconstructive surgery, there remains continued interest in using a variety of easily accessible methods for regenerative medicine efforts. Growth factors derived from platelet rich plasma (PRP) can contribute to tissue regeneration in allogenic bone graft, by assisting cell migration, proliferation, differentiation and extra cellular matrix synthesis.

Objective: To study the effect of human lyophilized GFs on healing of critical size bone defect in craniofacial bone of animal.

Materials and Methods: This study was conducted between October 2016 and October 2018. It was conducted at the Medical Research Center associated with Ain Shams Faculty of Medicine and approved from the Research Ethics Committee (REC) of Faculty of Medicine, Ain Shams University (No: FMASU 1969/2014). Using 30 albino rats divided into 3 groups .

Results: The results obtained in this study revealed a statistically significant bone healing after reconstruction of critical size calvarial bone defects by Lyophilized platelet growth factors (LPDGF) seeded on allogenic Demineralized bone matrix (DBM). In conclusion, this study presents a beneficial method for reconstruction of critical size calvarial bone defects by an already made non-immunogenic new tissue regenerate.

Conclusion: This study advocate the use of DBM with LPDGF as a reconstructive tool for bone regeneration. But further clinical studies are needed to evaluate its rule in the unfavorable general and local conditions.

Keywords: Lyophilized platelet growth factors , critical size defect , demineralized bone matrix

INTRODUCTION

B one defects caused by trauma, tumor resection, pathologic degeneration and congenital malformations is a challenging. Reconstruction of critical-sized bone loss has a significant clinical problem in craniofacial surgery and requires application of adjuncts such as bone grafts to accelerate bone regeneration and fracture healing (*Feighan et al., 1995*).

According to *Mabrouk et al. (2014)* the maxillofacial trauma and its complications represent a great socio-economic concern for the Egyptian health system.

There are multiple reconstructive options are available for reconstructing the critical size defects in craniomaxillofacial field.

In 2005, over 2.2 million bone grafting procedures were performed by orthopedists, neurosurgeons, dentists, and plastic surgeons worldwide (*Giannoudis et al., 2005*).

Currently, critical-size bone and soft-tissue defects are reconstructed using a variety of autogenous bone, alloplastic implants, composite free flaps, and rigid fixation devices (*Valerio et al., 2014*).

The reconstruction of the critical sized defects by autografts is considered the golden standard. They offer minimum immunological rejection, complete histocompatibility

1

and can provide the best osteoinductive, osteoconductive and osteogenic properties (*Samartzis et al., 2005*). The limitations in using autografts are the limited graft availability, bone resorption and the need for an additional surgery with resulting donor site morbidity (*Pollock et al., 2008*).

Composite vascularized free flaps may fail secondary to infection, extrusion and microsurgical complication resulting in removal and return to a deteriorating wound bed. Although vascularized composite allotransplantation has gained momentum clinically, a lifelong postoperative course of immunosuppression has been associated with significant morbidity and mortality (*Manassero et al., 2013*).

With the continued growth of cell therapy applications being used in clinical medicine and within operative plastic and reconstructive surgery, there remains continued interest in using a variety of easily accessible methods for regenerative medicine efforts (*Hu et al., 2015*).

Allogenic Demineralized bone matrix (DBM) is a form of allograft bone prepared by decalcifying the allogenic bone while preserving the extracellular matrix. This process is called demineralization (*Biswas et al., 2010*). This technique destroys the antigenic surface structure of the bone. Therefore, DBM does not evoke any appreciable local foreign body immunogenic reaction. DBM has the same properties of allograft in carrying the osteoconductive potential (*Katz et al., 2009*). Numerous therapies based on osteoinductive growth factors have been developed to reduce the need for autogenous bone, As is evident by proteomics and functional analyses, human platelets contain a myriad of molecules exhibiting important physiological functions (*Maguire et al., 2003*).

These include the GFs (growth factors) that are stored in the α -granules. PGFs (platelet growth factors) include three PDGF (platelet derived growth factor) isoforms (PDGF-AA, -AB and -BB), VEGF (vascular endothelial growth factor), TGF- β (transforming growth factor- β ; TGF- β 1 and TGF- β 2), EGF (epidermal growth factor), FGF (fibroblast growth factor) and some IGF(insulin-like growth factor).There is increasing interest in the use of human PGFs both as therapeutic biological products in the field of regenerative medicine as well as for various applications in cell cultures and cell therapy as a replacement of FBS (fetal bovine serum). Such preparations need, however, to be standardized (*Blairet al., 2009*).

For such clinical applications, a single-donor PC (platelet concentrate), or a platelet-rich-plasma donation, of autologous or allogeneic origin, is used as a topical product, as such or after activation by exogenous thrombin to induce the release and temporary entrapment of the GF into a fibrin-rich biomaterial, called platelet gel. The GF-rich fraction can be applied on tissues, either alone or in combination with a carrier, such as collagen or ceramics (*Marx et al., 1998*).

Currently, the major therapeutic applications of platelet lysates rich in GF are to stimulate bone regeneration in oral, maxillofacial, plastic and orthopaedic surgery, or to accelerate wound healing of soft tissues (*Borzini et al., 2005*).