

بسم الله الرحمن الرحيم

 $\infty \infty \infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى

مسئولية عن محتوى هذه الرسالة.

A Systematic Review of the Clinical Efficacy of Oxidized Zirconium as a Bearing Surface in Hip Arthroplasty

Systematic Review

Submitted for Partial Fulfillment of Master Degree in Orthopaedic Surgery

Ву

Mohammed Sayed Ahmed

M.B.B.C.h, Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Timour Fikry El-Husseini

Professor of Orthopaedic Surgery Faculty of Medicine, Ain Shams University

Dr. Mostafa Mamdouh Ashoub

Lecturer of Orthopaedic Surgery Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2022

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Timour Fekry El-Husseini,** Professor of Orthopaedic Surgery, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Mostafa Mandouh Ashoub**, Lecturer of Orthopaedic Surgery, Faculty of Medicine, Ain Shams University, for his sincere efforts, fruitful encouragement.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Mohammed Sayed Ahmed

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	5
Review of Literture	
Chapter 1: Types of Bearing Surfaces of Total Arthroplasty	Hip 6
Chapter 2: Assessment of Total Hip Arthorp Patients	lasty 45
Chapter 3: Complications	52
Patients and Methods	61
Results	65
Discussion	75
Summary	81
Conclusion	
References	85
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table 1:	Comparison between different t surfaces combination	ypes of bearing 4
Table 2:	Studies included in the review	65
Table 3:	Harris Hip score	66
Table 4:	Comparison between CoCr, Ceran a bearing surface in total her regarding Harris Hip score	nic and OxZi as ip arthroplasty 67
Table 5:	Studies depending on Western McMaster Universities Osteoa score (WOMAC score)	n Ontario and arthritis Index 68
Table 6:	Comparison between CoCr ar bearing surface in total hij regarding WOMAC score	nd OxZi as a p arthroplasty 69
Table 7:	Wear rate	70
Table 8:	Comparison between CoCr, cer as a bearing surface in total h regarding wear rate	amic and OxZi ip arthroplasty 70
Table 9:	Studies include cases of infeceramic and OxZi as a bearing su	ction in CoCr, 1rface in THA72
Table 10:	Studies include cases of Instabil in CoCr, ceramic and OxZi as a in THA	ity (dislocation) bearing surface 73
Table 11:	Study include cases of looser ceramic and OxZi as a bearing su	ning in CoCr, urface in THA74
Table 12:	Study include cases of fracture in and OxZi as a bearing surface in	n CoCr, ceramic THA74

Tist of Figures

Fig. No.	Title	Page No.
Figure 1:	The modes of wear for a total hi	p arthroplasty11
Figure 2:	Different types of bearing surfaces15	
Figure 3:	Different current bearing surface options17	
Figure 4:	Effect of metal on DNA23	
Figure 5:	Ceramic on ceramic Total hip ar	throplasty26
Figure 6:	Fractured-ceramic-liner-of-aceta component	abular
Figure 7:	Ceramic-head-fracture-in-the-lea	ft-hip35
Figure 8:	Composition and Microstructu Zirconium	ure of Oxidized
Figure 9:	Xrays of oxinium implant on the oxinium implant on the right	e left / nature of 39
Figure 10:	Cement pins were rubbed again disk and a cobalt chrome disk cycles in order to test resistance	st an OXINIUM for 10 million to abrasion42
Figure 11:	Schematic of frontal view of the right total hip arthroplasty	ne pelvis with a 49
Figure 12:	(a) Frontal and (b) lateral schem hip showing the three DeLee and of the acetabular component (I- Gruen zones of the femoral com the frontal view and 8–14 on the	natics of the left l Charnley zones -III) and the 14 nponent (1–7 on lateral view)51
Figure 13:	Rt hip showing loosening in AP & lateral view on Rt side	view on Lt side 53
Figure 14:	Plain X-ray AP view showing Lt	hip dislocation54
Figure 15:	Mechanism of metallosis	56

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 16:	Vancouver classification of fractures	intraoperative 58
Figure 17:	PRISMA (Preferred Reportin Systematic Reviews and Meta diagram for study selection	ng Items for -analysis) flow 64
Figure 18:	Comparison between CoCr, Cerar a bearing surface in total hi regarding Harris Hip score	nic and OxZi as ip arthroplasty 67
Figure 19:	Comparison between CoCr ar bearing surface in total hip regarding WOMAC score	nd OxZi as a p arthroplasty 69
Figure 20:	Comparison between CoCr, cera as a bearing surface in total h regarding mean liner wear rate	amic and OxZi ip arthroplasty 71
Figure 21:	Comparison between CoCr, cera as a bearing surface in total h regarding mean volumetric wear	amic and OxZi ip arthroplasty rate71
Figure 22:	Comparison between CoCr, cera as a bearing surface in total h regarding wear rate	amic and OxZi ip arthroplasty 72
Figure 23:	Studies include cases of Instabili in CoCr, ceramic and OxZi as a in THA	ity (dislocation) bearing surface 73

Tist of Abbreviations

Abb.	Full term
ASIS	Anterior Superior Iliac Spine
AVN	Avascular necrosis
CoCr	Cobalt-chromium
HHS	Harris Hip Score
LCFA	Lateral circumflex femoral artery
MgO	Magnesium oxide
MOP	Metal-on-polyethylene
OA	Osteoarthritis
OxZi	Oxidized zirconium
PE	Polyethylene
QOL	Quality of life
THA	Total hip arthroplasty
THR	Total hip replacement
VAS	Visual analogue scale
WOMAC	Western Ontario and McMaster Universities Osteoarthritis Index
XLP	Highly cross-linked polyethylene
Y2O3	Yttrium oxide
ZTA	Zirconia-toughened alumina

INTRODUCTION

Total hip arthroplasty (THA) is one of the most successful surgical procedures in orthopaedics. It is associated with high satisfaction rates and significant improvements in quality of life following surgery. On the other hand, the main cause of late revision is osteolysis and wear, as a result of failure of bearing surfaces. Now, several options are available to the surgeon when choosing the bearing surface in THA. ^(1,2)

Total hip replacement (THA) is an established treatment for end stage hip arthritis providing reliable pain free function. The long-term survival of THA is multifactorial, the main modes of failure being aseptic loosening and wear induced osteolysis. This has brought about the search for alternative bearing surfaces. ⁽³⁾

Total hip arthroplasty (THA) has had a dynamic process which has different bearing surfaces and bearing combination abandoned and reintroduced to be able to reach to understand and improve materials over time. The bearing surfaces generally can be grouped into two main categories: hard-on-hard and hard-onsoft surfaces. Such as metal-on-polyethylene, ceramic onpolyethylene, metal-on-metal and ceramic-on-ceramic.⁽⁴⁾

The ideal bearing surface for THA should have satisfactory wear characteristics and should be durable, bio-inert, costeffective, and easy to implant. On the femoral head side, historically, cobalt-chromium and ceramic have been the materials of choice as bearing surfaces articulated with the

¹

polyethylene liner. A relatively new, alternative type of material that combines the strength of a metal with the surface/wears properties of a ceramic is oxidized zirconium (OxZi) (Oxinium; Smith & Nephew, Memphis, TN).⁽⁵⁾

The thermally oxidized metal zirconium surface (zirconiumd 2.5% niobium alloy) is transformed into low-friction hard ceramic surface that is resistant to abrasion. The oxide layer is not a coating but rather the surface zone of the metal alloy, conferring bearing properties of ceramic without the fracture risk.⁽⁶⁾

Fretting and corrosion at the junction between the head and the trunnion of the femoral component in modular total hip arthroplasties (THAs) has recently emerged as a mechanism of failure. This may lead to clinically significant adverse local tissue reactions in both metal on-polyethylene and ceramic-onpolyethylene articulations, following on from earlier concerns with metal-on-metal bearings. ⁽⁷⁾

The tribocorrosion seen at the head-trunnion interface is associated with mechanically assisted crevice-type corrosion. It is exacerbated when the interface is between different metals. It has been postulated that the use of inert head material such as solid ceramic head or a head made of oxidized metal might mitigate against tribocorrosion.⁽⁸⁾

Wear is a gross or microscopic loss of particles from the articulating surface, it is now considered as a multifactorial process affecting the longevity of the hip joint, which can be divided into patient, implant and surgical factors. Patient factors are mainly age, weight, activity level, and special cultural demands. Implant factors consist of design and manufacturing methods, materials and bearing couples. Surgical factors include the approach, component positioning, soft-tissue balancing, thirdbody wear, history of dislocation and surgeon experience.⁽⁹⁾

A variety of characteristics contribute to the optimal performance of bearing surfaces, the most important of which are corrosion resistance, wear resistance, synoviaphilic surface, low friction and fracture toughness. Each bearing combination has its own advantages and disadvantages. ⁽¹⁰⁾

Table 1: Comparison between different types of bearing surfaces combination:

	Advantages	Disadvantages
Metal on polyethylene	 ✓ Most forgiving combination. ✓ Least expensive. ✓ Used for elderly patients with low functional demands. 	 Highest wear Relative decrease in stability and range of motion with smaller femoral head Boundary lubrication mechanism which increases
		wear with bigger femoral head ✓ Backside wear
Ceramic on polyethylene	 ✓ Increased hardness, scratch resistance and burst strength ✓ Increased wettability for improved lubrication ✓ Lower wear rates ✓ Excellent clinical results 	 Risk of fracture of the ceramic Higher wear rates than ceramic-on-ceramic
Metal on Metal	 Larger femoral heads available with increased stability, jump distance and range of motion Mixed fluid film lubrication mechanism which decreases wear with bigger femoral heads Self-polishing capacity Better wear resistance than metal-on polyethylene (low volumetric wear) Used in young patients with high functional demands 	 Highest biological reactivity and cytotoxicity with highest number of wear particles High levels of metal ions in blood, urine and remote organs Metal sensitivity (Delayed type hypersensitivity) Possible carcinogenesis and genetic damage
Ceramic on ceramic	 Lowest biologic reactivity Low friction and wettability Low surface roughness Highest wear resistance Reserved for young, high functional demand patients with metal sensitivity 	 Brittleness and possible component fractures Small femoral heads with decreased range of motion Stripe wear with possible squeaking Less forgiving combination Most expensive

AIM OF THE WORK

Our aim in this study is to evaluate efficacy of Oxide zirconium femoral head as a bearing surface in Total hip arthroplasty patients regarding clinical and radiological outcomes.

Review of Literature

TYPES OF BEARING SURFACES OF TOTAL HIP ARTHROPLASTY

Total hip arthroplasty (THA) has been described as one of the most successful surgery of the 20th century, however implant longevity remains a limiting factor in long-term clinical outcomes. Wear debris generated from bearing surfaces has been shown to result in osteolysis and catastrophic implant failure. Interest of bearing surfaces couples with low wear rates and wear debris due to decrease age of patients who undergo total hip arthroplasty. We discuss the most current bearings for THA, including highly cross-linked polyethylene (XLP), antioxidant polyethylene (eg, vitamin E XLP), and various ceramic alloys. The longevity of conventional THA is limited by the wear of the articulating surfaces, which results in loosening, instability, or fracture from osteolysis and tissue necrosis.⁽¹²⁻¹³⁾

Metal on polyethylene, metal on metal, and ceramic on ceramic bearings will continue as the dominant bearing materials for total hip arthroplasty because of their excellent track record, resistance to damage, and ease of manufacture and use. Clinically, most bearing combinations consist of cobalt-chromium (CoCr) alloy or ceramic femoral heads articulating against highly cross-linked ultra-high-molecular weight polyethylene acetabular inserts. Alumina on alumina ceramic and CoCr on CoCr articulations are used in younger and more active patients. Each

6