

بسم الله الرحمن الرحيم

 $\infty \infty \infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى

AIN SHAMS UNIVERSITY

مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

HAPTOGLOBIN GENOTYPING AND RISK OF CEREBRAL VASOSPASM AFTER ANEURYSMAL SUBARACHNOID HEMORRHAGE

Thesis Submitted for Partial Fulfillment of M.D. Degree In Neurology

> *By* Ahmed Mohammed Ali Ateya

MSc. Neuropsychiatry

Supervisors

Prof. Dr. Mahmoud Haroon Ibrahim

Professor of Neurology- Faculty of Medicine- Ain Shams University

Prof. Dr. Nagia Aly Fahmy

Prof. of Neurology, Faculty of Medicine - Ain Shams University

Prof. Dr. Sobhy Hassab El-Nabi

Prof. of Genetics and Molecular Biology, Faculty of Science - Menoufia University

Prof. Dr. Ahmed Ali El-Bassiouny

Prof. of Neurology, Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2019

Contents

Title	Page No.
Acknoledgment	i
Dedication	iii
List of Abbreviations	iv
List of Figures	vii
List of Tables	ix
Introduction	1
Aims and Objectives of the Study	5
Review of Literature	••••••
- Chapter (1): Outcome of aneurysmal	subarachnoid
hemorrhage	6
- Chapter (2): Pathophysiology of cereb	oral
vasospasm	17
- Chapter (3): Genomics of cerebral vas	sospasm 27
- Chapter (4): Biological and clinical si	gnificance of
haptoglobin	
Patients and Methods	64
Results	75
Discussion	
Summary	116
Conclusion	
Recommendations	
References	
Arabic Summary	

ACKNOWLEDGMENTS

First and foremost, praises and thanks to God, the Almighty, for his blessings throughout my research work to complete it successfully.

I wish to express my sincere appreciation to **Prof. Mahmoud Haroon** for giving me the opportunity to do this work and providing invaluable guidance throughout this research. Also, I provide special thanks for his kind efforts to remove the obstacles that faced me in this work.

In addition, special thanks and gratitude to **Prof.** *Nagia Fahmy* for her kind encouragement, support and generous cooperation with her inspiring ideas that were helpful during the preparation and completion of this work.

I would like to express my special thanks of gratitude to **Prof. Sobhy Hassab El-Nabi** to whom I am extremely grateful for what he has offered me and without his support, this research work would not be completed in such way.

Any attempt at any level can 't be satisfactorily to express my deepest thankfulness and gratefulness to **Prof.** *Ahmed El-Bassiouny* for his kind support and patience along the course of preparation, collecting and reviewing of this research work. His dynamism, vision, sincerity and motivation have deeply inspired me.

I am extending my heartfelt thanks to both *Ass. Prof. Khaled Gobba* and *Ass. Prof. Islam El-Garawany*, *(Molecular Biology Lab, Faculty of Science, Menofeya University)* for their contributions and great help and patience during the completion of this research work.

Finally, I can't forget all the favors of **Prof. Magdy** *Khalaf* (*Professor of Neurology, Matareya Teaching Hospital*) who has contributed with his experiences, tips, support and knowledge to guide me all through this study.

DEDICATION

This work is dedicated to my parents, my wife and my daughters; whose love, praying, caring and sacrifices enlighten me through this research work.

Abb.		Full term
AA	:	Arachidonic acid
aCV	:	Angiographic cerebral vasospasm
AD	:	Alzheimer's disease
АроЕ	:	Apolipoprotein E
aSAH	:	Aneurysmal subarachnoid hemorrhage
BBB	:	Blood brain barrier
CAMs	:	Cell adhesion molecules
CBS	:	Cystathionine β -synthase
CGRP	:	Calcitonin-gene related peptide
CICR	:	Calcium induced calcium release
CO	:	Carbon monoxide
COX	:	Cyclooxygenase
СТ	:	Computed tomography
CTA	:	Computed tomography angiography
CV	:	Cerebral vasospasm
CVD	:	Cardiovascular disease
DAG	:	Diacyl glycerol
DCI	:	Delayed cerebral ischemia
DLP	:	Dyslipidemia
DM	:	Diabetes mellitus
DNDs	:	Delayed neurological deficits
DSA	:	Digital subtraction angiography
EDRF	:	Endothelium-derived relaxing factor
eNOS	:	Endothelial nitric oxide synthase
ЕТ	:	Endothelins
GOS	:	Glasgow outcome scale
H2S	:	Hydrogen disulfide

List of Abbreviations

Abb.		Full term
HO-1	:	Heme oxygenase-1
Hb	:	Haemoglobin
HDL	:	High density lipoproteins
Нр	:	Haptoglobin
Hp–Hb	:	Haptoglobin-haemoglobin
HTN	:	Hypertension
IL	:	Interleukins
IP ₃	:	Inositol triphosphate
LCAT	:	Lecithin cholesterol acyl-transferase
LDL	:	Low-density lipoproteins
MFV	:	Mean flow velocities
MLCK	:	Myosin light chain kinase
MMM	:	Multimodal monitoring
MRA	:	Magnetic resonance angiography
MS	:	Multiple sclerosis
NO	:	Nitric oxide
O_2	:	Superoxide
OH ⁻	:	Hydroxyl
OxyHb	:	Oxyhemoglobin
PAI-1	:	Plasminogen activator inhibitor-1
PG	:	Prostaglandins
PIP ₂	:	phosphatidylinositol biphosphate
PVD	:	Peripheral vascular disease
ROS	:	Reactive oxygen species
RyRs	:	Ryanodine receptors
sCV	:	Symptomatic cerebral vasospasm
SOD	:	Superoxide dismutase
TBI	:	Traumatic brain injury

Abb.		Full term
TCD	:	Transcranial doppler
tPA	:	Tissue-type plasminogen activator
TXA2	:	Thromboxane
uPA	:	Urokinase plasminogen activator
VLDLs	:	Very low-density lipoproteins

List of Figures

Fig. No.	Title Page No.	
Figure (1):	Oxyhemoglobin's role in cerebral vasospasm.	21
Figure (2):	Role of free radicals after SAH	22
Figure (3):	A schematic diagram of the genetic structure of the Haptoglobin alleles	42
Figure (4):	Transcranial Doppler machine	68
Figure (5):	PCR thermocycler; Biometra T-personal [™]	71
Figure (6):	Typical PCR gel electrophoresis patterns for different Hp genotypes	72
Figure (7):	Thermo Scientific O'GeneRuler 1 kb Plus DNA Ladder	72
Figure (8):	Study patients demographics & risk factors for cerebral vasospasm distribution	77
Figure (9):	Clinical & radiological predictors of cerebral vasospasm distribution among sturdy patients	78
Figure (10):	Intracranial aneurysm angioarchitecture criteria distribution among studied patients	79
Figure (11):	Gel electrophoresis of some DNA samples of study patients showing different HP genotypes.	81
Figure (12):	Geographical distribution of Hp genotyping for studied patients over Egyptian governorates	82
Figure (13):	Hp genotype distribution in relation to CV among studied patients	83
Figure (14):	Risk estimation between Hp allele & development of CV	84

List of Figures (Cont..)

Fig. No.	Title Page No.	
Figure (15):	Distribution of Cerebral vasospasm & Hp genotype as risk factors for delayed cerebral	87
Figure (16):	Binary regression model predicting cerebral vasospasm in relation to risk factors	90
Figure (17):	Case 1 presentation	93
Figure (18):	Case 2 presentation	95
Figure (19):	Case 3 presentation	9 9

Table No.	Title Page N	0.
Table (1): Table (2):	Hunt & Hess Scale and Fisher scale Study patients' demographics & risk factors for	66
Table (3):	cerebral vasospasm distribution Clinical & radiological predictors of cerebral	76
Table (4):	vasospasm distribution among study patients Intracranial aneurysm angioarchitecture criteria	78
Table (6):	distribution among study patients Hp genotype distribution in relation to CV among studied patients	79 83
Table (7):	Risk estimation between Hp allele & development of CV	84
Table (8):	Distribution of different Hp genotypes in relation to clinical & radiological risk factors among	97
Table (9):	Distribution of Cerebral vasospasm & Hp genotype as risk factors for delayed cerebral	80
Table (10):	ischemia Binary regression model predicting cerebral vasospasm in relation to risk factors	87 90

List of Tables

Haptoglobin genotyping and risk of cerebral vasospasm after aneurysmal subarachnoid hemorrhage

Abstract:

Background: Aneurysmal subarachnoid hemorrhage (aSAH) accounts for approximately 6-8% of all strokes and 22-25% of cerebrovascular deaths. Nearly 70% of patients develop angiographic vasospasm, 30% of them will develop delayed cerebral ischemia (DCI). Delayed cerebral ischemia is a common and potentially devastating complication in patients who have sustained SAH and it is the most significant cause of morbidity and mortality in patients surviving aSAH long enough to reach medical care, even exceeding direct effects of the aneurysm rupture as well as rebleeding. As a theoretical model, an "omic signature" could incorporate an individual's genetic, proteomic, and metabolomic phenotype into a powerful predictive tool. Genetic information such as haptoglobin genotypes could be used to stratify risk of subsequent CV and DCI, provide prognostic information based on published outcome probabilities, and prompt implementation of novel treatments based on individual pathophysiological models. **Objective:** This study aims to study the genetic predisposition of Haptoglobin typing as a predictor for cerebral vasospasm (CV) after acute subarachnoid hemorrhage (aSAH) in Egyptian population. Methodology: The study was carried out at Matariya Teaching Hospital, Cairo, Egypt. The study 50 patients with acute aSAH were prospectively recruited and followed up clinically and radiologically by TCD examination for 14 days following aneurysmal rupture to early detect hemodynamic changes associated with CV and also occurrence of DCI secondary to CV. Results: As part of result analyses, about 34 patients (68%) developed CV among them 19 patients (38%) developed DCI. Only history of hypertension [RR= 1.6 (OR= 4)], diabetes mellitus [RR= 1.5 (OR= 3.4)] and smoking [RR= 1.5 (OR= 3.6)] had a significant independent relationship (P <0.05) with short term risk to develop CV following aSAH. While, Age, sex, hyperlipidemia, cardiovascular disease and peripheral vascular disease, intracranial aneurysm site and size did not achieve significant association for developing CV. Regrading poor Fisher scale (P = 0.03) and poor Hunt and Hess score (P = 0.04), it showed significant association with CV. Genotyping of Hp protein among our study cohort revealed that the relative distribution of the three common haptoglobin genotypes (Hp1-1, HP2-I & HP2-2) among Egyptian patients of aSAH is 14%, 41% and 45%, respectively; (gene proportion being 0.34 for Hp1 and 0.66 for Hp2). Furthermore; Hp 2 allele was associated with radiographic vasospasm detected by TCD among our study patients (2-2 & 2-1 Vs 1-1: RR =5.4, OR =19.8, P <0.001). Moreover, searching for relationship between CV & Hp genotype and risk for development of DCI; both variables failed to achieve significant relationship (P > 0.05). Conclusion: the Hp genotype may determine the susceptibility to cerebral vasospasm after acute aSAH. This has the potential for use in risk stratification by allowing for the identification of those patients requiring increased vigilance due to their inherent genetic risk for developing CV. Identifying SAH patients who are at high risk for development of vasospasm would allow for the selective administration of aggressive treatments to those patients who clearly would benefit from them.

Keywords: HP, aSAH, DCI, CV, DCI

Introduction

Aim and Objectives of the Study