بسم الله الرحمن الرحيم

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى

مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد
ACTIVE CONTROL OF TURBULENT FLOW SEPARATION OVER A FLAPPED AIRFOIL USING FLUIDIC OSCILLATOR

By

Ashraf Kassem Attaalla Kassem

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE in Aerospace Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022
ACTIVE CONTROL OF TURBULENT FLOW SEPARATION OVER A FLAPPED AIRFOIL USING FLUIDIC OSCILLATOR

By
Ashraf Kassem Attaalla Kassem

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Aerospace Engineering

Under the Supervision of

Prof. Dr. Mohammed Madbouli Abdellrahman
Professor
Aerospace Engineering Department
Faculty of Engineering, Cairo University

Assoc. Prof. Dr. Amr Gamal Guaily
Associate Professor
Engineering Mathematics and Physics Department
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2022
ACTIVE CONTROL OF TURBULENT FLOW
SEPARATION OVER A FLAPPED AIRFOIL USING
FLUIDIC OSCILLATOR

By
Ashraf Kassem Attaalla Kassem

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Aerospace Engineering

Approved by the
Examinining Committee

Prof. Dr. Mohammed Madbouli Abdelrahman, Thesis Main Advisor

Assoc. Prof. Dr. Amr Gamal Guaily, Advisor

Prof. Dr. Gamal M. El Bayoumi, Internal Examiner

Prof. Dr. Ahmed Farouk AbdelGawad, External Examiner
- Chair, Mechanical Power Engineering Dept.,
 Faculty of Engineering, Zagazig University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2022
Title of Thesis:

Active Control of Turbulent Flow Separation over a Flapped Airfoil Using Fluidic Oscillator

Key Words:

Flow over a Flapped Airfoil; Fluidic Oscillator; Flow Separation Control; URANS; \(k-\omega \) SST Turbulence Modeling

Summary:

Flow detachment from lifted bodies like airfoils causes a remarkable decrease in its aerodynamic performance. Therefore, the current work aims to recover the performance by considering a fluidic oscillator device that adds momentum energy near the separation zone to recover the separated boundary layer. Since the flow is turbulent, RANS modeling was used, and the problem was simulated using OpenFOAM software. Validation is an essential step to select the adequate turbulence model to detect separation by comparing the results with experimental and numerical published work. Actuation parameters were investigated to optimize the performance.
Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Ashraf Kassem Attaalla Kassem Date: / / 2022

Signature:
Acknowledgment

First of all, great thanks to Allah Almighty who supported and guided me all the way and blessed me with all of his blessings.

No words can describe the massive role and support from my supervisors, Prof. Dr. Mohammed Madbouli and Assoc. Prof. Dr. Amr Guaily. They aided and advised me all the way with guidance. They continuously offered their time and knowledge with deep forbearance.

My Family is the final key to my work puzzle. They gave me all kinds of moral support to make it done. I give my gratitude to all of my family members.

Finally, I wish to express my full gratitude to all whose supported me with any kind of support and help to produce the current work.
Table of Contents

DISCLAIMER ... I
ACKNOWLEDGMENT ... II
TABLE OF CONTENTS .. III
LIST OF TABLES .. VII
LIST OF FIGURES ... VIII
NOMENCLATURE ... XI
ABSTRACT .. XVI

CHAPTER 1 : INTRODUCTION AND LITERATURE REVIEW 1

1.1. PROBLEM DEFINITION ... 1
1.2. ACTIVE FLOW CONTROL TECHNOLOGY ON AIRCRAFTS 1
 1.2.1. Active vs Passive Flow Control ... 3
 1.2.2. Active Separation Control over an Airfoil .. 3
1.3. FLUIDIC OSCILLATORS .. 5
 1.3.1. Fluidic Oscillators: Properties and Types ... 6
 1.3.2. Two Feedback Fluidic Oscillator: Operation ... 7
 1.3.2.1. Wall Attachment Effect (Coandă Effect) .. 7
 1.3.2.2. Geometrical Parameters .. 8
1.4. TURBULENCE MODELLING .. 9
 1.4.1. Turbulence Physics .. 9
 Energy Cascade .. 10
 1.4.2. Reynolds Averaging ... 10
 Closure Problem ... 11
 1.4.3. Wall Functions .. 12
 1.4.4. RANS, LES, and DNS ... 13
1.5. THESIS OBJECTIVES .. 14
1.6. THESIS OUTLINES .. 14

CHAPTER 2 : GOVERNING EQUATIONS AND FINITE-VOLUME DISCRETIZATION .. 15

2.1. INTRODUCTION ... 15
2.2. FLOW ASSUMPTIONS .. 15
2.3. URANS EQUATIONS .. 15
2.4. TURBULENCE MODEL EQUATIONS ... 16
 \(k - \omega \) SST turbulence Model .. 16
CHAPTER 3 : VALIDATION ...23

3.1. INTRODUCTION ...23
 Computer Descriptions and Software Used for Simulations:23

3.2. FLOW INSIDE A 2D CHANNEL ..24

3.3 FLOW INSIDE A PLANE DIFFUSER ..25
 3.3.1. Problem description ...25
 3.3.2. Boundary and Initial conditions ...25
 3.3.2.1. Inlet Boundary Conditions ..25
 3.3.2.2. Outlet and Walls Boundary Conditions25
 3.3.2.3. Initial Conditions ...26
 3.3.3. The Grid ..26
 3.3.4. Results ..27
 3.3.4.1. Y* Investigation ...27
 3.3.4.2. Pressure Distribution at Plane Wall28
 3.3.4.3. Mean Velocity Profiles at Inclined Wall29
 3.3.4.4. Separation Detection ...30

3.4. FLOW OVER A CIRCULAR CYLINDER (FOC) AT $Re = 10^6$ USING $k -
 \omega$ SST TURBULENCE MODEL ...32
 3.4.1. Problem Description ...32
 3.4.2. Boundary and Initial Conditions ...32
 3.4.2.1. Inlet Boundary Conditions ..32
 3.4.2.2. Cylinder Wall and Far-Field Boundary Conditions32
 3.4.2.3. Initial Conditions ...33
 3.4.3. Computational Grid ...33
 3.4.4. The Results ...33
 3.4.4.1. Grid-Independency Test ..33
 3.4.4.2. Mean Streamwise Velocity at $x/Dc = 0.75$ and 1.534
 3.4.4.3. Main Parameters Validation ...35
 3.4.4.4. Flow Visualization ..36

3.5. SUMMARY ..37
 3.5.1. Diffuser problem ...37
 3.5.2. Circular Cylinder problem ...38