بسم الله الرحمن الرحيم

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسؤولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد
Investigating the effect of phototherapy on gene expression of CXCR3-B in Vitiligo

Thesis
Submitted for Partial Fulfilment of master’s degree in medical Biochemistry & Molecular biology

By
Fatma Al-Zahraa Mohammed Mostafa Mohammed Agag
M.B.B.Ch. Ain Shams University 2017

Under supervision of

Prof. Dr. Amal Abdelsalam Mansour
Professor of Medical Biochemistry & Molecular Biology
Faculty of Medicine, Ain Shams University

Prof. Dr. Heba Mahmoud Diab
Professor of Dermatology, Venereology and Andrology
Faculty of Medicine, Ain Shams University

Dr. Seham Adel Badawy
Lecturer of Medical Biochemistry and Molecular Biology
Faculty of Medicine, Ain Shams University

Dr. Nesma Hussein Abdel Hay Ibrahim
Lecturer of Medical Biochemistry and Molecular Biology
Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2022
قالوا:
"سبحانك إلا علمنا لتأمل إلَّا ما علمتنا إنك أنتَ الحكيم العليم الأكيم.

صدّ الله العظيم

سورة البقرة الآية: 21"
First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Prof. Dr. Amal Abdelsalam Mansour, Professor of Medical Biochemistry & Molecular Biology - Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Prof. Dr. Heba Mahmoud Diab, Professor of Dermatology, Venereology and Andrology, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to Dr. Seham Adel Badawy, Lecturer of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

I wish to introduce my deep respect and thanks to Dr. Nesma Hussein Abdel Hay Ibrahim, Lecturer of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, for her kindness, supervision and cooperation in this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Fatma Alzahraa Mohammed Mostafa Mohammed Agag
List of Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>I</td>
</tr>
<tr>
<td>List of Figures</td>
<td>II</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>IV</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Aim of the Work</td>
<td>4</td>
</tr>
<tr>
<td>Review of Literature</td>
<td></td>
</tr>
<tr>
<td>Chapter (1): Vitiligo</td>
<td>5</td>
</tr>
<tr>
<td>Chapter (2): CXCR3</td>
<td>22</td>
</tr>
<tr>
<td>Chapter (3): Phototherapy</td>
<td>29</td>
</tr>
<tr>
<td>Patients and Methods</td>
<td>33</td>
</tr>
<tr>
<td>Results</td>
<td>49</td>
</tr>
<tr>
<td>Discussion</td>
<td>68</td>
</tr>
<tr>
<td>Summary</td>
<td>77</td>
</tr>
<tr>
<td>Conclusion</td>
<td>79</td>
</tr>
<tr>
<td>Recommendations</td>
<td>80</td>
</tr>
<tr>
<td>References</td>
<td>81</td>
</tr>
<tr>
<td>Arabic Summary</td>
<td></td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Differential diagnosis of vitiligo.</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Genes related to vitiligo.</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Demographic data of the patients.</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>Skin phototypes of patients.</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>VIDA score of cases.</td>
<td>53</td>
</tr>
<tr>
<td>6</td>
<td>Response to treatment</td>
<td>55</td>
</tr>
<tr>
<td>7</td>
<td>Factors may be affecting response to treatment.</td>
<td>59</td>
</tr>
<tr>
<td>8</td>
<td>ANOVA analysis of age, duration and response to treatment.</td>
<td>60</td>
</tr>
<tr>
<td>9</td>
<td>Pearson correlation (r) between age, duration and response to treatment. Spearman rank correlation between skin phototype and response to treatment.</td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>Comparison between before treatment and after treatment according to fold change about CXCR3B.</td>
<td>62</td>
</tr>
<tr>
<td>11</td>
<td>Comparison between EXCISMER and NBUVB according to fold change of CXCR3B.</td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>Analysis of (ROC) curve for prediction of exposure to phototherapy.</td>
<td>64</td>
</tr>
<tr>
<td>13</td>
<td>Analysis of (ROC) curve for prediction of high response to treatment.</td>
<td>65</td>
</tr>
<tr>
<td>14</td>
<td>Analysis of (ROC) curve for prediction of moderate response.</td>
<td>66</td>
</tr>
<tr>
<td>15</td>
<td>Analysis of (ROC) curve for prediction of low response.</td>
<td>67</td>
</tr>
</tbody>
</table>
list of Figures

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Section of Prelesional active vitiligo stained with antibodies to CD3 (blue) and CD8 (red).</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Schematic diagram of current understanding of vitiligo pathogenesis.</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>CXC chemokines contain one random (“X”) amino acid in between their NH2-terminal Cys residues.</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>Alternative splicing of CXCR3.</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>3D model of human CXCR3.</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Ligand bias CXCR3.</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>NBUVB (Waldmann Medizintechnik GmbH, Villingen-Schwenningen, Germany).</td>
<td>37</td>
</tr>
<tr>
<td>8</td>
<td>A 308-nm monochromatic excimer laser Exciplex device.</td>
<td>38</td>
</tr>
<tr>
<td>9</td>
<td>Nanodrop 2000c ThermoScientific.</td>
<td>42</td>
</tr>
<tr>
<td>10</td>
<td>applied biosystems thermal cycler.</td>
<td>45</td>
</tr>
<tr>
<td>11</td>
<td>BIORAD (CFX Connect Real-Time System).</td>
<td>47</td>
</tr>
<tr>
<td>12</td>
<td>Sex distribution of cases.</td>
<td>53</td>
</tr>
<tr>
<td>13</td>
<td>Family history of vitiligo among cases.</td>
<td>53</td>
</tr>
<tr>
<td>14</td>
<td>Skin phototypes of cases.</td>
<td>54</td>
</tr>
<tr>
<td>15</td>
<td>VIDA scores of cases.</td>
<td>55</td>
</tr>
<tr>
<td>16</td>
<td>Response of treatment among NBUVB and Excimer.</td>
<td>57</td>
</tr>
<tr>
<td>17</td>
<td>Low response to NBUVB.</td>
<td>57</td>
</tr>
<tr>
<td>18</td>
<td>Medium response to NBUVB.</td>
<td>58</td>
</tr>
<tr>
<td>19</td>
<td>High response to NBUVB.</td>
<td>58</td>
</tr>
<tr>
<td>20</td>
<td>Medium response to Excimer.</td>
<td>59</td>
</tr>
<tr>
<td>21</td>
<td>High response to excimer.</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>22</td>
<td>Scatter bot correlating skin phototype and response to treatment</td>
<td>63</td>
</tr>
<tr>
<td>23</td>
<td>Mean blot correlating duration of vitiligo and response to treatment.</td>
<td>63</td>
</tr>
<tr>
<td>24</td>
<td>Comparison between before treatment and after treatment according to folding change about CXCR3B.</td>
<td>64</td>
</tr>
<tr>
<td>25</td>
<td>Comparison between EXCISMER and NBUVB according to folding change of CXCR3B.</td>
<td>65</td>
</tr>
<tr>
<td>26</td>
<td>Receiver-operating characteristic (ROC) curve for prediction of exposure to phototherapy using the fold change of CXCR3B.</td>
<td>66</td>
</tr>
<tr>
<td>27</td>
<td>Receiver-operating characteristic (ROC) curve for prediction of high response to treatment using the fold change of CXCR3B.</td>
<td>67</td>
</tr>
<tr>
<td>28</td>
<td>Receiver-operating characteristic (ROC) curve for prediction of moderate response to treatment using the fold change of CXCR3B.</td>
<td>68</td>
</tr>
<tr>
<td>29</td>
<td>Receiver-operating characteristic (ROC) curve for prediction of low response to treatment using the fold change of CXCR3B.</td>
<td>69</td>
</tr>
</tbody>
</table>
List of Abbreviations

<table>
<thead>
<tr>
<th>Abb.</th>
<th>Full term</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB-UVB</td>
<td>Broad-band ultraviolet B</td>
</tr>
<tr>
<td>CRH</td>
<td>Corticotropin releasing hormone</td>
</tr>
<tr>
<td>CRHR 1</td>
<td>Corticotropin releasing hormone receptor 1</td>
</tr>
<tr>
<td>CTLA-4</td>
<td>Cytotoxic T lymphocyte antigen-4</td>
</tr>
<tr>
<td>CXCR3</td>
<td>C-X-C motif chemokine receptor 3</td>
</tr>
<tr>
<td>CXCR3-alt</td>
<td>Chemokine receptor 3-alternative</td>
</tr>
<tr>
<td>DAMPs</td>
<td>Damage-associated molecular patterns</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>GPR9</td>
<td>G protein-coupled receptor 9</td>
</tr>
<tr>
<td>GWAS</td>
<td>Genome-Wide Association Studies</td>
</tr>
<tr>
<td>HLA</td>
<td>Human leukocyte antigen</td>
</tr>
<tr>
<td>HMGB-1</td>
<td>High-mobility group box chromosomal protein 1</td>
</tr>
<tr>
<td>HS</td>
<td>Highly significant</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IL-17</td>
<td>Interleukin-17</td>
</tr>
<tr>
<td>IQR</td>
<td>Inter-quartile range</td>
</tr>
<tr>
<td>mAb</td>
<td>Monoclonal antibodies</td>
</tr>
<tr>
<td>MBEH</td>
<td>Monobenzyle Ether of Hydroquinone</td>
</tr>
<tr>
<td>MED</td>
<td>Minimal erythematous dose</td>
</tr>
<tr>
<td>MITF</td>
<td>Melanocyte Inducing Transcription Factor</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger Ribonucleic acid</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NB-UVB</td>
<td>Narrowband UVB</td>
</tr>
<tr>
<td>Nrf2</td>
<td>Nuclear factor E2-related factor 2</td>
</tr>
<tr>
<td>Nrf2-ARE/HO-1</td>
<td>Nuclear factor E2-related factor 2-antioxidant response element/heme oxygenase-1</td>
</tr>
<tr>
<td>NS</td>
<td>Non significant</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Abb.</td>
<td>Full term</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>NSV</td>
<td>Non-segmental vitiligo</td>
</tr>
<tr>
<td>POMC</td>
<td>Pro-opiomelanocortin gene</td>
</tr>
<tr>
<td>PTPN22</td>
<td>Protein tyrosine phosphatase non-receptor type 22</td>
</tr>
<tr>
<td>PUVA</td>
<td>Psoralen + UVA</td>
</tr>
<tr>
<td>PUVA</td>
<td>Psoralen ultraviolet A</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver-operating characteristic</td>
</tr>
<tr>
<td>S</td>
<td>Significant</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Science</td>
</tr>
<tr>
<td>SV</td>
<td>Segmental vitiligo</td>
</tr>
<tr>
<td>Th17</td>
<td>T helper type 17</td>
</tr>
<tr>
<td>TM</td>
<td>Transmembrane</td>
</tr>
<tr>
<td>TRM</td>
<td>Tissue Resident Memory cell</td>
</tr>
<tr>
<td>TRPM2</td>
<td>transient receptor potential M member 2</td>
</tr>
</tbody>
</table>
Introduction

Vitiligo is an acquired disease affecting skin characterized by the selective loss of melanocytes which results in typical nonscaly, chalky-white macules. It is common with worldwide prevalence about 0.5%-2% (Bergqvist et al., 2020).

Vitiligo has significant psychological impact leading to social isolation, discrimination and low self-esteem (Hamidizadeh et al., 2020). A recent metaanalysis showed that 23% vitiligo patients, suffer from anexity disorder and is significantly higher in females than in males. Many patients consider skin depigmentation as an impenetrable barrier for finding a suitable job or getting married and suffer from more discrimination in daily life (Liu et al., 2021).

Vitiligo is classified clinically into non-segmental vitiligo (NSV) and segmental vitiligo (SV). Non-segmental vitiligo includes acrofacial, mucosal, generalized or common, universal, mixed and rare forms. Segmental vitiligo may affect one, two or multiple segments of the body and even have bilateral segmental distribution with leukotrichia (Taïeb and Picardo, 2019).

That exact etiolog of vitiligo is unclear. Theories about its pathogenesis include T cell mediated autoimmune distruption, that maybe triggered by oxidative stress, with an underlying genetic predisposition (Gianfaldoni and Lotti, 2019).
Vitiligo relapses occur at the same site after cessation of treatment, indicating an autoimmune memory of the skin cells that allows disease exacerbation after treatment is stopped. The presence of melanocyte-specific TRM (Tissue Resident Memory cell) is clearly demonstrated in vitiligo, a disease that may be seen now as a memory skin disease. In addition, chemokine receptors signaling appears important to drive TRM into the appropriate tissue environment for their formation and maintenance, as shown for the chemokine receptors CXCR3 in vitiligo (Cavalié et al., 2015, Boniface et al., 2019).

C-X-C motif chemokine receptor 3 (CXCR3) is gene coding for a chemokine receptor that is highly expressed on effector T cells and plays an important role in T cell trafficking and function. The CXCR3 gene is located on the long arm of chromosome X in region (Nazari et al., 2020).

Deficiency in CXCR3 reduces the overall number of TRM cells in the skin and monoclonal antibodies (mAb)-mediated CXCR3 blockade can prevent TRM formation (Zaid et al., 2017, Fernandez-Ruiz et al., 2016).

CXCR3 has three isoforms in human: CXCR3A, CXCR3B and CXCR3Alt. Importantly, the isoform B is absent in rodents. Signaling through CXCR3-A stimulates proliferation and cell migration, while CXCR3-B signals inhibit angiogenesis, proliferation, and migration but can stimulate apoptosis in tumor cells. The role of CXCB
stimulation in vitiligo has not been reviled yet \cite{Nazari et al., 2020, Tulic et al., 2019}.

Phototherapy including psoralen ultraviolet A (PUVA), excimer lamp and laser, and narrowband UVB (NBUVB) is used to treat vitiligo. Excimer is a targeted therapy that works well for localized disease, but NBUVB is preferable for widespread vitiligo (greater than 5\% of the body surface area). Narrow band UVB (311nm) is now one of the most effective treatment modalities for vitiligo, but its mechanisms of action are not well understood \cite{Zubair and Hamzavi, 2020, Ibrahim et al., 2019}.
Aim of the Work

The primary aim of the work was to investigate the effect of phototherapy (NBUVB and excimer laser) on CXCR3B expression in vitiligo.

The secondary aim was to find a possible causal relationship between CXCR3B levels and vitiligo in an attempt to evaluate CXCR3B role in the pathogenesis of vitiligo.
Chapter 1
VITILIGO

1.1 Definition
It is a chronic depigmentary disorder presented by white patches due to destruction of melanocytes of epidermis (Taïeb and Picardo, 2019).

1.1. Prevelance and Gender Distribution
Vitiligo is common with worldwide prevalence about 0.5%–1% appearing at any age but most cases before the age of 20, with almost equal gender distribution (Gianfaldoni and Lotti, 2019).

1.2. Clinical Types and Differential Diagnoses
Vitiligo is clinically presented by pale or milk-white macules or patches due to the selective destruction of melanocytes (Picardo et al., 2015).

Clinically, vitiligo is classified into two major types: segmental and Non-segmental vitiligo. Non-segmental vitiligo (NSV) is much more common with asymmetrical distribution usually has a gradual onset and progressive course. Segmental vitiligo (SV) follows a characteristic dermatomal distribution whether unilateral or bilateral. It’s less common and often patients are presented with a rapid onset and stationary course (Zailaie, 2017).

However, there is a form of mixed vitiligo involving the combination of both SV and NSV in the same patient (Speeckaert et al., 2020).