

التوثيق الإلكتروني والميكروفيلم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

Comparing the Antibacterial Effect of *Psidium guajava* Extract, *Camellia sinensis* Extract and Chlorhexidine gluconate as Root Canal Irrigants in Primary Teeth: In-Vitro Study

Thesis submitted to:

The Department of Pediatric Dentistry and Dental Public Health,

Faculty of Dentistry

Ain Shams University

In partial fulfillment of the requirements for

The Master's Degree in Pediatric Dentistry

Submitted By:

Dina Hamed Rabea

(B.D.S 2013)

Faculty of Dentistry

Ain Shams University

2020

Supervisors

Dr. Amr Mahmoud Abd El Aziz

Professor of Pediatric Dentistry and Dental Public Health Department of Pediatric Dentistry and Dental Public Health Faculty of Dentistry Ain Shams University

Dr. Gehan Gaber Allam

Associate Professor of Pediatric Dentistry and Dental Public Health Department of Pediatric Dentistry and Dental Public Health Faculty of Dentistry Ain Shams University

Dr. Soha Abd El Rahman El Hady

Professor of Medical Microbiology and Immunology Department of Microbiology and Immunology Faculty of Medicine Ain Shams University

Acknowledgement

I would like to express my deepest gratitude to **Dr**. Amr Mahmoud Abd El Aziz, Professor of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Ain Shams University, for his scientific guidance, encouragement, and positive attitude throughout the course of this research.

My sincere appreciation to **Dr. Gehan Gaber Allam**, Associate Professor of Pediatric Dentistry and Dental Public Health, **Faculty of Dentistry**, Ain Shams University, for the insightful criticism, valuable comments, time and support.

I would like to offer my special thanks to **Dr. Soha Abd El Rahman El-Hady,** Professor of Medical Microbiology and Immunology, **Faculty of Medicine, Ain Shams University**, for her expertise and profound effort in this work.

Words stand short when expressing my gratefulness for **Dr. Ahmed M. El-Issawy**, lecturer of Pharmacognosy, **Faculty of Pharmacy**, Ain Shams University for his generous help in the preparation of the herbal extracts in the study. I would like to express my deepest respect to my Professors and staff members of Pediatric Dentistry and Dental Public Health department for their constant support and concern.

At last, I would really like to thank my dearest friends and colleagues for their help.

Dedication

To My Mother, for all the encouragement and motivation to fight and face all the obstacles and to keep pushing. You have been the best symbol of a loving mother; I Hope I will always make you proud.

To My Sister Dalia, the symbol of love and giving. You have always led me through valleys of darkness with light and hope. Your unconditional love and support are the reasons I am where I am today.

And to my friend Radwa El Shakhs, Assistant Lecturer of Pediatric Dentistry, Faculty of Dentistry, the Egyptian Russian University, for her massive support with this thesis.

List of Contents

Page
List of Tables I
List of Figures II
List of Abbreviations III
Introduction1
Review of literature
Aim of The Study27
Materials and Methods28
Results
Discussion
Summary66
Conclusions69
Recommendations70
References71
Arabic Summary82

List	of	Tabl	les

Table	Title	page
<u>Table (1)</u>	The materials used in the study	28
<u>Table (2)</u>	Mean ± standard deviation (SD) of bacterial count (CFU/ml) for different tested groups	49
<u>Table (3)</u>	Comparing the significance level of the mean differences of Chlorhexidine group with the other three experimental groups	52
<u>Table (4)</u>	Comparing the significance level of the mean differences of Guava leaves extract group with the other three experimental groups	53
<u>Table (5)</u>	Comparing the significance level 54 of the mean differences of Green tea leaves extract group with the other three experimental groups	
<u>Table (6)</u>	Comparing the significance level of the mean differences of the positive control group with the other three experimental groups	55

List	of	Fig	ures

Figure	Title	page
Fig (1)	Chlorhexidine di-gluconate 2%	29
Fig (2)	Dried guava leaves	29
Fig (3)	Dry green tea leaves	29
Fig (4)	Absolute ethanol	29
Fig (5)	Absorbent paper points	29
Fig (6)	A flow chart representing study design and grouping	32
Fig (7)	Securing patency of canal with Mani K#15 file	35
Fig (8)	Sealing of roots with glue to prevent bacterial leakage	35
Fig (9)	Roots packed in sterilization pouches	35
Fig (10)	Dried guava leaves in electric food processor	38
Fig (11)	Ground guava leaves into coarse powder	38
Fig (12)	Whatman filter paper number 1 in glass funnel	38
Fig (13)	Graduated cylinder	38
Fig (14)	Rotatory shaker (Rotavapor)	39
Fig (15)	Dry green tea leaves	41
Fig (16)	Green tea leaves filtrate	41
Fig (17)	Green tea leaves extract stored in glass jar	41
Fig (18)	Incubation of experimental and positive control groups	43
Fig (19)	Negative control group	43
Fig (20)	Chlorhexidine di-gluconate 2% irrigation	45
Fig (21)	20% Guava leaves extract irrigation	45
Fig (22)	20% Green tea leaves extract irrigation	45
Fig (23)	Root canal sample collection	47
Fig (24)	Average bacterial count among the three experimental groups after irrigation	50
Fig (25)	Average bacterial count among the three experimental groups & positive control group after irrigation	50
Fig (26)	Reduction percentage	51

Abbreviation	Term
СНХ	Chlorhexidine
P. guajava	Psidium guajava
E. faecalis	Enterococcus faecalis
P. gingivalis	Porphyromonas gingivalis
E. coli	Escherichia coli
S. mutans	Streptococcus mutans
S. aureus	Staphylococcus aureus
C. albicans	Candida albicans
NaOCl	Sodium hypochlorite
St. aureus	Streptococcus aureus
H. influenzae	Haemophilus influenzae
P. aeruginosa	Pseudomonas aeruginosa
A. actinomycetemcomcomitans	Aggregatibacter actinomycetemcomitans
EGCG	Epigallocatechin gallate
GC	Gallo-catechin
CFU	Colony forming units
BHI	Brain Heart Infusion
BHIA	Brain Heart Infusion agar
PCR	Polymerase Chain reaction
PSI	Pounds per square inch
RPM	Revolutions per minute
SD	Standard deviation
ml	Milliliters
EDTA	Ethylenediaminetetraacetic acid
DNA	Deoxyribonucleic acid

List of Abbreviations

Introduction

The early loss of primary teeth can compromise the development of permanent dentition and lead to psychological and behavioral problems. ⁽¹⁾

Successful root canal therapy depends on the combination of proper mechanical instrumentation, disinfection and obturation. Of these three essential steps, irrigation of the root canal is the most important in the process of healing. Irrigation results in flushing out of debris, dissolving tissue, and disinfecting the root canal system. ⁽²⁾

Chlorhexidine gluconate is proved to be an acceptably biocompatible antimicrobial irrigant. ^(3,4,5) However, discoloration of teeth, precipitation of calculus, loss of taste, dryness of the oral cavity and irritation of the oral mucosa limit its use. To counter the ineffectiveness, potential side effects and safety concerns of synthetic irrigants, herbal alternatives have been introduced. Herbal irrigants are easily available and cost-effective. They have long shelf life and low toxicity and lack microbial resistance. ⁽⁶⁾

Extracts from *Psidium guajava* species showed significant inhibitory effects against *Enterococcus faecalis*; one of the most

1