

لتوثيق الإلكترونى والميكروفيلم





HANA Y



لتوثيق الإلكترونى والميكروفيله



# شبكة المعلومات الجامعية



#### HANAA ALY



لتوثيق الإلكترونى والميكروفيلم

حامعة عين التوثيق الإلكترونى والميكر نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات Junersity Information Nr جامعة عين شمس شبكة المعلومات الجامعية @ ASUNET يجب أن تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

#### HANAA ALY





#### Comparing the Diagnostic Efficacy of Digital Breast Tomosynthesis with Full Field Digital Mammography Using BI-RADS Scoring.

#### A Thesis

Submitted for the Partial Fulfilment of the Requirements of the Doctorate Degree in Radiology

#### *Fresented by* Rana Mamdouh Naeim Tolba

M.B., B. Ch., M. Sc Faculty of Medicine - Ain Shams University

#### Under supervision of Prof. Dr. Rania Aly Marouf

Professor of Radiology Faculty of Medicine - Ain Shams University

#### Dr. Merhan Ahmed Nasr

Lecturer of Radiology Faculty of Medicine - Ain Shams University

#### Dr. Marwa El Sayed Abd El-Rahman

Lecturer of Radiology Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2021





First and foremost, my deep gratefulness and indebtedness is to Allah, the Most Gracious and the Most Merciful.

I would like to express my deepest appreciation and respect to **Prof, Dr. Rania Aly Marouf** Professor of Radiodiagnosis, Faculty of Medicine-Ain Shams University, for her generous guidance and patience.

I am grateful to Dr. Merhan Ahmed Nasr Lecture of Radiodiagnosis, Faculty of Medicine- Ain Shams University, for her effort and patiency.

My deep appreciation to Dr. Marwa El Sayed Abd El-Rahman, Lecturer of Radiodiagnosis, Faculty of medicine-Ain Shams University, for her sincere guidance and great effort during this study.

Lastly and not least, I send my deepest love to my family for their love and care.



### LIST OF THE CONTENTS

| List of Abbreviations                        | <i>i</i> |
|----------------------------------------------|----------|
| List of figures.                             | iii      |
| List of tables.                              | vi       |
| Introduction and aim of the work             | 1        |
| Review of literature                         | 4        |
| Anatomy of the breast                        | 4        |
| Pathology of most common breast diseases     | 14       |
| Technique & interpretation of tomosynthesis. |          |
| Patients and Methods                         | 72       |
| > Results                                    | 75       |
| > Illustrative cases                         | 91       |
| Discussion                                   | 100      |
| > Conclusion & recommendations               | 106      |
| > References                                 | 107      |
| <ul> <li>Arabic Summary</li> </ul>           | 116      |

### LIST OF ABBREVIATIONS

| FFDM   | Full-field digital mammography           |
|--------|------------------------------------------|
| BIRADS | Breast imaging reporting and data system |
| DBT    | Digital breast tomosynthesis             |
| TDLU   | The marking 1. decaded 1. bende market   |
| AMF    | Anterior mammary fascia                  |
|        |                                          |
| PMF    | Posterior mammary fascia                 |
| ASL    | Anterior suspensory ligament             |
| HPL    | Human placental lactogen                 |
| IGM    | Idiopathic granulomatous mastitis        |
| IDP    | Intraductal papilloma                    |
| DCIS   | Ductal carcinoma in situ                 |
| RR     | Relative risk                            |
| LCIS   | Lobular Carcinoma in Situ                |
| IDC    | Invasive ductal carcinoma                |
| NOS    | Not otherwise specified                  |
| NST    | No special type                          |

| EIC  | Extensive intraductal carcinoma        |
|------|----------------------------------------|
| AJCC | American Joint Commission on Cancer    |
| IUCC | International Union for Cancer Control |
| CC   | Craniocaudal                           |
| DBT  | Digital breast tomosynthesis           |
| FFDM | Full field digital mammography         |
| MLO  | Mediolateral oblique                   |
| SM   | Synthetic mammography                  |
| FDA  | Food and Drug Administration           |
| DM   | Digital mammography                    |
| ACR  | American College of Radiology          |

## LIST OF FIGURES

| Figures<br>No. | Title                                                            | Page No. |
|----------------|------------------------------------------------------------------|----------|
| Figure 1.1     | Component of the breast                                          | 4        |
| Figure 1.2     | Illustration of Terminal Ductal Lobular Unit<br>(TDLU)           | 5        |
| Figure 1.3     | Normal ultrasound breast anatomy                                 | 7        |
| Figure 1.4     | Sagittal Tl C + breast MR demonstrating zonal anatomy            | 8        |
| Figure 1.5     | Arrangement of the axillary lymph nodes                          | 10       |
| Figure 1.6     | lymphatic drainage of the breast                                 | 11       |
| Figure 1.7     | Normal mammographic breast anatomy                               | 13       |
| Figure 2.1     | Chronic breast abscess                                           | 16       |
| Figure 2.2     | mammographic calcification of duct Ectasia                       | 17       |
| Figure 2.3     | Mammographic appearance of fibrocystic disease                   | 20       |
| Figure 2.4     | Mammogram of bilateral multiple fibroadenomas                    | 22       |
| Figure 2.5     | Mammographic & US appearance of a benign phyllodes tumor         | 23       |
| Figure 2.6     | Mammographic appearance of a radial scar with magnification view | 25       |
| Figure. 2.7    | Mammographic appearance of sclerosing adenosis                   | 27       |
| Figure. 2.8    | a solitary benign intraductal papilloma                          | 28       |

| Figure 2.9  | TNM staging of breast carcinoma                                                                                                                       | 37 |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 3.1  | Diagram of DBT image acquisition                                                                                                                      | 39 |
| Figure 3. 2 | Mediolateral oblique views of left breast in 57-<br>year-old woman recalled after mammographic<br>screening because of a spiculated mass              | 42 |
| Figure 3.3  | Illustration of breast composition according to ACR density scores                                                                                    | 44 |
| Figure 3.4  | <u>mammogram</u> of dense <u>breasts</u> showing lateral<br>asymmetric focal <u>density</u> . <u>Tomosynthesis</u><br>reveals spiculated margins      | 45 |
| Figure 3.5  | Contralateral breast cancer detected in DBT and MRI not observed in mammography                                                                       | 48 |
| Figure 3.6  | Asymmetric focal <u>density</u> by mammography<br>found to be spiculated using <u>tomosynthesis</u> ,<br>Subsequent analysis showed it to be IDC      | 49 |
| Figure 3.7  | tomosynthesis confirmed an intramammary<br>lymph node with medial architectural distortion<br>that was subsequently diagnosed as contralateral<br>IDC | 50 |
| Figure 3.8  | <u>Tomosynthesis</u> reveals cutanouse navus by its<br>smooth margins and enhanced rim, and<br>demonstrates its cutaneous location                    | 51 |
| Figure 3.9  | <u>mammogram</u> showing asymmetric <u>density</u> that<br>was better detected by DBT with associated<br>lateral architectural distortion             | 52 |
| Figure 3.10 | Breast IDC seen only at DBT at routine screening                                                                                                      | 53 |
| Figure 3.11 | Cancer seen only at DBT at routine screening of a 46-year-old woman.                                                                                  | 54 |
| Figure 3.12 | Invasive ductal carcinoma manifesting as architectural distortion in dense breast tissue                                                              | 56 |
| Figure 3.13 | Complex sclerosing lesion manifesting as architectural distortion                                                                                     | 57 |
| Figure 3.14 | Tomosynthesis used to improve localization and<br>guide targeted US of two areas of architectural<br>distortion                                       | 59 |
|             | viii                                                                                                                                                  |    |

| Figure 3.15 | Tomosynthesis localization guided US evaluation                                                                                                   | 60 |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 3.16 | Use of spot compression tomosynthesis to increase the conspicuity of subtle architectural distortion                                              | 61 |
| Figure 3.17 | case of invasive lobular carcinoma, MLO full-<br>field tomosynthesis image shows an<br>architectural distortion                                   | 62 |
| Figure 3.18 | micro calcifications are best seen on the<br>synthetic 2D image ("highlighting") and the<br>desmoplastic reaction is seen only on DBT.            | 70 |
| Figure 3.19 | Screening mammography of left breast<br>&Synthetic 2D image shows segmental-linear<br>calcifications highly suspicious for high-grade<br>DCIS     | 70 |
| Figure 3.20 | A mass with large surrounding specula is easily<br>seen on synthetic 2D and DBT but can't be seen<br>even in retrospect conventional mammography. | 71 |
| Figure 5.1  | the distribution of different breast densities<br>among different age groups                                                                      | 77 |
| Figure 5.2  | Effect of addition of DBT to FFDM on BIRADS in diagnostic and screening setup                                                                     | 81 |
| Figure 5.3  | Effect of addition of DBT to FFDM on BIRADS<br>scoring in different breast densities in diagnostic<br>and screening setup                         | 85 |
| Figure 5.4  | Effect of addition of DBT to FFDM on<br>BIRADS scoring in different age groups in<br>diagnostic and screening setup                               | 90 |

### LIST OF TABLES

| Table No.  | Title                                                                                                                                       | Page No. |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Table 3.1  | BIRADS (ACR) classification of breast composition                                                                                           | 43       |
| Table 3.2  | BIRADS assessment categories by mammography                                                                                                 | 67       |
| Table 5.1  | Breast density wise distribution of the study population                                                                                    | 76       |
| Table 5.2  | Age wise distribution of the study population                                                                                               | 76       |
| Table 5.3  | Percentage of BIRADS scoring of breast lesions on<br>FFDM in diagnostic and screening groups                                                | 77&78    |
| Table 5.4  | Percentage of BIRADS scoring of breast lesions on<br>DBT in diagnostic and screening groups                                                 | 78       |
| Table 5.5  | Diagnostic performance of FFDM & DBT                                                                                                        | 79       |
| Table 5.6  | Diagnostic indices of FFDM & DBT                                                                                                            | 79&80    |
| Table 5.7  | Effect of addition of DBT to FFDM on BIRADS in diagnostic and screening setup                                                               | 80       |
| Table 5.8  | Comparison of FFDM versus DBT according to<br>BIRADS scoring in detection of breast lesions in<br>fatty breast densities                    | 81&82    |
| Table 5.9  | Comparison of FFDM versus DBT according to<br>BIRADS scoring in detection of breast lesions in<br>scattered fibroglandular breast densities | 82&83    |
| Table 5.10 | Comparison of FFDM versus DBT according to<br>BIRADS scoring in detection of breast lesions in<br>heterogenouse breast densities            | 83       |
| Table 5.11 | Comparison of FFDM versus DBT according to<br>BIRADS scoring in detection of breast lesions in<br>extremely dense breast                    | 84       |
| Table 5.12 | Effect of addition of DBT to FFDM on BIRADS scoring in different breast densities in diagnostic and screening setup                         | 85       |

| Table 5.13        | Comparison of diagnostic indices of<br>mammography and tomosynthesis in different<br>densities                                          | 86    |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------|
| Table 5.14        | Comparison of FFDM versus DBT according to BIRADS scoring in detection of breast lesions in age group ( $30 \text{ y} - 40 \text{ y}$ ) | 86&87 |
| Table 5.15        | Comparison of FFDM versus DBT according to<br>BIRADS scoring in detection of breast lesions in<br>age group (41-50)                     | 87    |
| Table 5.16        | Comparison of FFDM versus DBT according to<br>BIRADS scoring in detection of breast lesions in<br>age group (51 y -60 y)                | 88    |
| Table 5.17        | Comparison of FFDM versus DBT according to<br>BIRADS scoring in detection of breast lesions in<br>age group ( 61 y-70 y)                | 89    |
| Table 5.18        | Effect of addition of DBT to FFDM on BIRADS<br>scoring in different age groups in diagnostic and<br>screening setup                     | 89&90 |
| Table 5.19        | Comparison of diagnostic indices of mammography and tomosynthesis in different age groups                                               | 90    |
| <b>Table 5.20</b> | Sensitivity of calcification detection of FFDM & DBT and synthetic 2D images                                                            | 91    |

#### **INTRODUCTION**

Breast cancer incidence rates have increased by 20% with a possible increase of diagnosis before the age of 50. The pursuit of accurate and cost-effective ways to diagnose breast cancer early remains of interest. *(Siegel et al, 2013)* 

Cancer care has become more individualized for our patients, and thus, better characterization for treatment planning is required. Imaging examination plays an important tool in cancer detection & diagnosis and determination the response to therapy. *(Jae-Hun et al, 2017)* 

Screening mammography has long been considered as the primary technique in breast cancer detection and assessment. It is considered the most important screening tool for breast cancer. Reduction in mortality among age group of 40 years of age or older caused by breast cancer has been seen in various studies where screening mammography was used. *(Tabar et al, 2011)* 

Initially, screen film mammography was done and was the standard technique in breast cancer screening for many years, but today the most common imaging procedure ,gradually replacing film screen ,is a two-view examination (medio-lateral oblique and cranio-caudal) using full-field digital mammography (FFDM). Searching for any mass, architectural distortion, or calcification, and then accordingly give BIRADS score (Breast imaging reporting and data system). *(Lewin et al, 2007)* 

Nevertheless, mammography suffers from several limitations, primarily due to reduced contrast between tumors and surrounding tissue. Especially in dense breasts, this can lead to a decrease in sensitivity and additional imaging methods are necessary. *(Emaus et al, 2015)* 

Advances in full-field digital mammography (FFDM) led to the