

لتوثيق الإلكترونى والميكروفيلم

MONA MAGHRABY

لتوثيق الإلكترونى والميكروفيله

شبكة المعلومات الجامعية

MONA MAGHRABY

حامعة عين التوثيق الإلكترونى والميك نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات University University Information Nr جامعة عين شمس شبكة المعلومات الجامعية @ ASUNET يجب أن تحفظ هذه الأقراص المدمجة بعيدا عن الغبار ona maghr.

"Efficiency of Er, Cr:YSGG laser in laminate veneers debonding on two ceramic materials and resin cement"

-An in vitro study-

Thesis

Submitted to the Faculty of Dentistry - Ain Shams University for Partial Fulfillment of the Requirements for Master's Degree in **Fixed Prosthodontics**

By

Ahmed Ibrahim Youssef

B.D.S., Faculty of Dentistry, Misr International University, (2009) TA, Misr International University

> Faculty of Dentistry Ain Shams University 2021

SUPERVISORS

Dr. Marwa Mohamed Wahsh

Professor of Fixed Prosthodontics, Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University

Prof. Norbert Gutknecht

Department Director of the Department of Restorative Dentistry, Director of the Aachen Dental Laser Center, Scientific Director of Academic Postgraduate Master Program "Master of Science – Laser in Dentistry at the RWTH Aachen University

Dr. Ghada Abd El Fattah Abd El Sattar

Associate Professor of Fixed Prosthodontics, Fixed prosthodontics Department, Faculty of Dentistry, Ain Shams University

Dr. Talaat Mohamed Samhan

Lecturer of Fixed Prosthodontics, Fixed prosthodontics Department, Faculty of Dentistry, Misr International University

Acknowledgment

In the name of **Allah**, the Most Gracious and the Most Merciful Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this thesis

It's a great honor to express my sincere gratitude and appreciation to my Advisor **Dr. Marwa Mohamed Wahsh,** Professor of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University for her guidance, expert assistance and powerful support.

I am highly thankful to **Prof. Norbert Gutknecht** the Department Director of restorative dentistry, director of the Aachen dental laser center, scientific director of academic postgraduate master program "master of science – laser in dentistry at the RWTH Aachen University for his immense knowledge, continuous motivation, friendly advice and kind support. Without his help, this work, would have never been possible

I am greatly thankful for my Advisor **Dr. Ghada Abd El Fattah** Associate Professor of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University for her encouragement, patience and support during the work.

I am also sincere thankful for **Dr. Talaat Mohamed** lecturer of Fixed Prosthodontics, Faculty of Dentistry, International University for his encouragement, patience and support during the work.

A special gratitude goes to the department of Fixed Prosthodontics. Misr International University.

Dedication

To My Happily Ever After My Family

My Greatest Supporter my mother Dr. Afaf Hamdy

> My Dad Prof Dr. Ibrahim Youssef

My Sisters, Wife & Daughter

My Friends who encouraged, support me and who continually stood by me

LIST OF CONTENTS

Page

-

LIST OF TABLES
LIST OF FIGURES
INTRODUCTION
REVIEW OF LITERATURE
STATEMENT OF PROBLEM
AIM OF THE STUDY
MATERIALS and METHODS
HYPOTHESIS
RESULTS
DISCUSSION
SUMMARY
CONCLUSION
RECOMMENDATIONS
REFERENCES
ARABIC SUMMARY

LIST OF TABLES

Table No.	Title	Page
1	The ceramic blocks in the study	31
2	Mechanical properties of IPS E.max lithium disilicate	32
3	Mechanical properties of Vita Mark II	33
4	Resin-based luting agents used in the study	33
5	Materials used in Ceramic Discs and Tooth Preparation	35
6	Experimental factorial design	38
7	Parameters used in crystallization of ceramic discs	40
8	WaterLase parameters for debonding procedures	45
9	The median, range values and results of Mann-Whitney U test for comparisons between the two ceramics and Kruskal-Wallis test for the effect of curing on surface roughness (Ra)	51
10	Frequencies, percentages and results of Fisher's Exact test for comparison between failure modes in different groups	56
11	The mean, standard deviation (SD), 95% Confidence Interval (95%CI) values and results of Student's t-test for comparison between debonding times (Seconds) in the two groups	60
12	The mean, standard deviation (SD) values and results of Kruskal-Wallis test for comparison between atomic weight % of different elements in the different groups	64
13	Three-way ANOVA results for the effect of different variables on mean shear bond strength in Mpa	66

Table No.	Title	Page
14	The mean, standard deviation (SD) values and results of three-way ANOVA test for comparison between shear bond strength after rebonding regardless of ceramic and curing	67
15	The mean, standard deviation (SD) values and results of three-way ANOVA test for comparison between shear bond strength of two ceramics regardless of curing and rebonding	68
16	The mean, standard deviation (SD) values and results of three-way ANOVA test for comparison between shear bond strength of the two curing modes regardless of ceramic and rebonding	69
17	The mean, standard deviation (SD) values and results of three-way ANOVA test for comparison between shear bond strength values with different interactions of variables.	72

LIST OF FIGURES

Figure no.	Title	Page
1	IPS EMAX CAD/CAM Ceramic Blocks (shade A1LT)	32
2	Vita Mark II CAD/CAM Ceramic Blocks (shade 1M1CI14)	32
3	Dual-Polymerizing Resin Cement (RelyX Ultimate Clicker)	34
4	Light-polymerizing Resin Cement (RelyX Veneer)	34
5	Hydrofluoric acid 9% & Silane coupling agent	36
6	Phosphoric acid etch 37%	36
7	Phosphoric acid tip applicator	36
8	Total Etch Adhesive	36
9	Isomet diamond saw 4000, Buehler, USA	39
10	Cutting lithium disilicate blocks	39
11	Cutting vita mark II blocks	39
12	Thickness 0.7mm using Holex digital caliper, Hoffmann Group, Germany	39
13	Furnace EP3010 programat, Ivoclar Vivadent, Schaan, Liechtenstein	40
14	Ceramic discs after crystallization	40
15	Bovine teeth fixed in color coded acrylic molds	41
16	Cold cure acrylic resin, Acrostone Dental & Medical Supplies, Egypt	41
17	Customized paralleling device assembly for preparation standardization	42

Figure no.	Title	Page
18	Phosphoric acid application	42
19	Showing HF acid application	43
20	Air and water spray rinsing	43
21	Ceramic disc placement in position	43
22	Light cure activation	43
23	Light cure device used	44
24	Er,Cr:YSGG with turbo hand piece	46
25	Custom made positioner to fix distance between ceramic sample and handpiece, and showing laser beam indicator after positioner attaching	46
26	Scan electron microscope unit	47
27	K550X sputter coater, England	48
28	Discs after gold sputting.	48
29	Instron Machine	49
30	Numbering of acrylic Blocks	49
31	Shearing blade positioned	49
32	Box plot representing median and range values of surface roughness (Ra) in the different groups (Circle represents outlier)	52
33	SEM IPS E.max CAD evaluation at baseline with two magnifications	53
34	SEM VITA MARK II evaluation at baseline with two magnifications	53

Figure no.	Title	Page
35	IPS Emax CAD cemented by Light cure resin cement evaluation after laser debonding procedures	54
36	IPS Emax CAD cemented by Dual cure resin cement evaluation after laser debonding procedures	54
37	VITA MARK II cemented by Light cure resin cement evaluation after laser debonding procedures	54
38	VITA MARK II cemented by Dual cure resin cement evaluation after laser debonding procedures	55
39	Bar chart representing failure modes of the different groups	57
40	IPS E max CAD cemented by light Cured Resin Cement, Failure mode evaluation (500 X) after laser debonding.	57
41	IPS Emax CAD cemented by Dual Cured Resin Cement, Failure Mode Evaluation after Laser Debonding	58
42	VITA MARK II Cemented Light Cure Resin Cement, Failure Mode Evaluation after laser debonding.	58
43	VITA MARK II Cemented by Dual Cure Resin Cement, Failure Mode Evaluation after laser debonding	59
44	Bar chart representing the mean and standard deviation values of debonding times of two ceramics.	60
45	Bar chart representing mean and standard deviation values of atomic % for different elements in the studied groups	65
46	Bar chart representing the mean and standard deviation values for shear bond strength of control and rebounded specimens regardless of ceramic and curing	67
47	Bar chart representing the mean and standard deviation values for shear bond strength of two ceramics regardless of curing	68

Figure no.	Title	Page
	and rebonding	
48	Bar chart representing the mean and standard deviation values for shear bond strength of the two curing modes regardless of ceramic and rebonding.	69
49	Bar chart representing the mean and standard deviation values for shear bond strength with different interactions of variables	73

INTRODUCTION

The Smile was found to be one of the first traits that get recognized during interpersonal interactions, where a beautiful smile was valued as high self- esteem. Dentistry has changed dramatically over the past decades, from just the meaning of treating the pain of dental disease to accomplishing the optimal standards of beauty. With the influence of the media that people get exposed to frequently now days, dental esthetics has become a challenge^[1, 2].

Nowadays, different cosmetic restoration materials can be used in the dental field, these materials can be used directly or indirectly. The most popular restorative material is the porcelain laminate veneers, which has various advantages for its ability to bond to the tooth structure, low occlusal wear of opposing teeth and on top of that its esthetic characterization, especially when done with layering technique^[3].

The microstructure of ceramics determines the optical and mechanical properties of the restoration. As the glass content increases, superior esthetics gained but low mechanical properties and vice versa, to combine both strength and esthetic properties, layering technique is done using a high-strength core veneered with translucent porcelain, monolithic restorations fabricated by CAD/CAM in case of Feldspathic porcelain and lithium disilicate or monolithic lithium disilicate fabricated by heat-pressed technology have been suggested^[4].

Materials frequently used for laminate veneers include lithium disilicate and feldspathic porcelain those types of veneers offer numerous benefits and features, lithium disilicate and Feldspathic veneers are mainly using CAD/CAM technology that makes them highly durable. Moreover,

1