

لتوثيق الإلكترونى والميكروفيلم

MONA MAGHRABY

لتوثيق الإلكترونى والميكروفيله

شبكة المعلومات الجامعية

MONA MAGHRABY

حامعة عين التوثيق الإلكترونى والميك نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات University University Information Nr جامعة عين شمس شبكة المعلومات الجامعية @ ASUNET يجب أن تحفظ هذه الأقراص المدمجة بعيدا عن الغبار ona maghr.

ASSESSMENT OF FLOW PATTERNS AND MORPHOLOGICAL CHANGES IN NILE RIVER BENDS, CASE STUDY: DAMIETTA BRANCH

By

Ashraf Farag Abdallah Boghdady

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE** in **Irrigation and Hydraulics Engineering**

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

ASSESSMENT OF FLOW PATTERNS AND MORPHOLOGICAL CHANGES IN NILE RIVER BENDS, CASE STUDY: DAMIETTA BRANCH

By

Ashraf Farag Abdallah Boghdady

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in Irrigation and Hydraulics Engineering

Under the Supervision of

Prof. Dr. Ashraf Hassan Mahib Ghanem

.....

Professor of Water Resources Engineering Department of Irrigation and Hydraulics Faculty of Engineering, Cairo University

Prof. Dr. Hossam Mohamed El-Sersawy

.....

Dr. Mostafa Tawfik Taha Ahmed

.....

Professor Nile Research Institute (NRI) National Water Research Center (NWRC) Ministry of Water Resources & Irrigation

Assistant Professor Department of Irrigation and Hydraulics Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

ASSESSMENT OF FLOW PATTERNS AND MORPHOLOGICAL CHANGES IN NILE RIVER BENDS, CASE STUDY: DAMIETTA BRANCH

By

Ashraf Farag Abdallah Boghdady

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in Irrigation and Hydraulics Engineering

Approved by the Examining Committee

Prof. Dr. Ashraf Hassan Mahib Ghanem

(Thesis main advisor)

Prof. Dr. Ahmed Wagdy Abdeldayem

(Internal examiner)

Prof. Dr. Anas Mohamed Elmolla (External examiner) Professor of Irrigation and Hydraulics, Faculty of Engineering, Al-Azhar University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

Engineer's Name: Date of Birth: Nationality: E-mail: Phone: Address: Registration Date: Awarding Date: Degree: Department:	Ashraf Farag Abdallah Boghdady 31/01/1987 Egyptian Ashraf_Farag@hotmail.com 010 08 31 55 67 Sakkara-Badrashein-Giza, Egypt 1 / 10 / 2016 / / 2021 Master of Science Irrigation and Hydraulics Engineering	
Supervisors:	Prof. Dr. Ashraf Hassan Mahib Ghanem Prof. Dr. Hossam Mohamed El-Sersawy (Professor, Nile Research Institute) Dr. Mostafa Tawfik Taha	
Examiners:	Prof. Dr. Ashraf Hassan Mahib Ghanem Prof. Dr. Ahmed Wagdy Abdeldayem Prof. Dr. Anas Mohamed Elmolla Professor of Irrigation and Hydraulics, Faculty Al-Azhar University	(Thesis main advisor) (Internal examiner) (External examiner) of Engineering,

Title of Thesis:

Assessment of Flow Patterns and Morphological Changes in Nile River Bends, Case Study: Damietta Branch

Key Words:

River bends; River bed morphology; Secondary flow; Bend scour equation; ADCP.

Summary:

The river's bends are a major feature of rivers as a result of their hydraulic and morphological characteristics where the flow pattern has a three-dimensional (3D) nature. The aim of this research is to study the flow pattern-induced morphological changes in river bends and evaluation of secondary currents in the different scenarios of flow. Twenty bends in the Damietta branch (Nile River) in Egypt were selected where the study was done by conducting a bathymetric survey and 3D velocity measurements by an ADCP. A numerical model (Delft 3D) was applied to simulate the study reach. Also, a Geographic information system (GIS) was used to analyze the morphological changes and bend scour depths. Four equations were selected for predicting bend scour depths and the results showed that these equations are not reliable in the study reach. Therefore, a new equation was derived to applied in the Nile River.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Ashraf Farag Abdallah Boghdady Date: / / 2021

Signature:

Acknowledgements

First of all, I wish to give all my thanks to God for the completion of this work.

I would like to thank my supervisors **Prof. Dr. Ashraf Ghanem** and **Dr. Mostafa Tawfik** for their extensive care and interest leading my work and guiding me dedicatedly to this point, Also, I would like to thank **Prof. Dr. Hossam El-Sersawy** for his guidance, effort, and support me throughout this study.

I would also like to thank the Nile research institute (**NRI**) Staff for their help and support, and for providing me the materials for conducting this research.

And of course, thanks to my family; my father, my mother, my brothers, and my wife for their support and great love that helped and encouraged me to continue and finish this research. Also, thanks to my lovely little daughter, Batool, that turned my life into a happier life.

Also, great thanks to my friends and colleges for their support and encouragement to be successful.

Finally, I want to thank everyone who helped or advised me during my work or even wished me good luck.

Table of Contents

DISCLAIM	/IER	I
ACKNOW	LEDGEMENTS	II
TABLE O	F CONTENTS	III
LIST OF 1	TABLES	VI
LIST OF F	IGURES	VII
LIST OF S	YMBOLS	IX
ABSTRAC	ΈΓ	X
СНАРТЕБ	R 1 : INTRODUCTION	1
1.1.	General	1
1.2.	Problem Statement	2
1.3.	Objectives and Approach	
1.4.	THESIS OUTLINE	4
СНАРТЕВ	R 2 : BACKGROUND AND LITERATURE REVIEW	5
2.1.	INTRODUCTION	5
2.2.	THE NILE RIVER (DAMIETTA BRANCH)	6
2.3.	NILE RIVER MORPHOLOGY	7
2.4.	CHANNEL PATTERNS	
2.4.1.	Channel types	
2.4.2.	Meander Characteristics	9
2.5.	BEND TYPES	
2.6.	FLOW IN RIVER BENDS	11
2.7.	SECONDARY FLOW IN RIVER BENDS	
2.8.	THE STRENGTH OF SECONDARY FLOW	13
2.9.	STREAM POWER	14
2.10.	NUMERICAL MODELS AND EXPERIMENTAL STUDIES	15
2.11.	FIELD MEASUREMENT OF THREE-DIMENSIONAL FLOW VELOCITY	15
2.12.	BEND SCOUR EQUATIONS	16
СНАРТЕВ	R 3 : METHODOLOGY AND MATERIALS	
3.1.	INTRODUCTION	
3.2.	Methodology	
3.3.	Study Area	
3.4.	DATA COLLECTION	
3.4.1.	Field maps	
3.4.2.	Hydrological data	

3.5.	FIELD MEASUREMENTS	23
3.5.1.	Bathymetric survey	23
3.5.2.	Three-dimensional velocity (ADCP)	24
3.5.3.	3D Velocity Data Processing	26
CHA	PTER 4 : NUMERICAL MODEL FORMULATION, PREPARATION A	ND
APPLICAT	'IONS	29
4.1.	INTRODUCTION	29
4.2.	MODEL DESCRIPTION (DELFT3D)	30
4.3.	GRID SYSTEM	30
4.3.1.	σ- coordinates system- σ grid	30
4.3.2.	Z co-ordinate system	31
4.4.	GOVERNING EQUATIONS (HYDRODYNAMIC EQUATIONS)	31
4.4.1.	Horizontal Momentum Equation	31
4.4.2.	Continuity Equation	32
4.4.3.	Secondary flow	32
4.5.	MODEL PREPARATION	33
4.5.1.	Construct the model	33
4.5.2.	Model Time Step	35
4.5.3.	Model calibration.	36
CHAPTER	5 : RESULTS AND ANALYSIS	42
5.1.	Model Scenarios Applications	42
5.1.1.	Maximum discharge scenario (critical case)	42
5.1.2.	Dominant discharge scenario.	42
5.1.3.	Minimum discharge scenario.	42
5.2.	Model Results	43
5.2.1.	Magnitude velocity	43
5.2.2.	Water surface levels and depths	43
5.2.3.	Secondary velocity	43
5.2.4.	Unit stream power	43
5.3.	Geometry Analysis	52
5.4.	Morphological Analysis	54
5.5.	Hydraulic Analysis	57
5.5.1.	Secondary flow	57
5.5.2.	Unit stream power	59
5.6.	FLOW PATTERN AND MORPHOLOGICAL CHANGES CORRELATION	60
5.6.1.	Relationship between bend geometry (BTI) and secondary flow.	60
5.6.2.	Relationship between measured scour depth and secondary flow (maximum disch	arge
	case).	61
5.6.3.	Relationship between unit stream power and morphological changes	62
CHAPTER	6 : BEND SCOUR EQUATIONS	63
6.1.	INTRODUCTION	63
6.2.	EXISTING FORMULAS OF BEND SCOUR	63

6.2.1.	Bend scour equations analysis	63
6.2.2.	Performance of scour equations	66
6.3.	MODIFICATION EQUATIONS FOR NILE RIVER	67
6.4.	DEVELOPED NILE RIVER BEND SCOUR PREDICTION EQUATION	68
6.5.	PERFORMANCE OF DEVELOP BEND SCOUR EQUATION	
CHAPTER	R 7 : CONCLUSIONS AND RECOMMENDATIONS	71
CHAPTER 7.1.	R 7 : CONCLUSIONS AND RECOMMENDATIONS	71
CHAPTER 7.1. 7.2.	R 7 : CONCLUSIONS AND RECOMMENDATIONS Conclusions Recommendations	71 71 72

List of Tables

Table 2.1 Impact of HAD construction on the Nile River	7
Table 3.1 Location and description of study reach bends	20
Table 4.1 Modules of Delft3D	29
Table 4.2 Delft3D calibration settings	36
Table 4.3 Error comparison methods	38
Table 5.1 Main flow discharge values and corresponding water levels at gauge stations	42
Table 5.2 Magnitude velocity (m/s), maximum secondary velocities (m/s) and the ratio	
between them in the study reach bends	50
Table 5.3 Bends geometry characteristics analysis	52
Table 5.4 Bends general morphological changes	55
Table 5.5 The correlation between the flow pattern and morphological changes	60
Table 6.1 List of selected bend scour equations	64
Table 6.2 Summary of the measured and calculated bend scour depths	65
Table 6.3 Performance measures of selected equations (calculated error statistics (m))	67
Table 6.4 Performance measures of modified equations (calculated error statistics (m))	68
Table 6.5 Correlation between bend scour equations parameters	69
Table 6.6 Performance of scour bend formulas indicated by MAD, RMSE and MAE	70

List of Figures

Figure 1.1 Nile river (Damietta branch), an example of river bends from Google Earth	2
Figure 1.2 Secondary velocity and water level super elevation in curved channel	2
Figure 2.1 Nile River bends (Damietta Branch)	5
Figure 2.2 Nile River layout and main barrages	6
Figure 2.3 Geometrical characteristics of meandering river	9
Figure 2.4 Typical meandering river cross-sections	11
Figure 2.5 The distribution of shear stress along a meandering river (Knighton, 1998)	11
Figure 2.6 Sketch of flow in channel bend	13
Figure 2.7 Sampling principle of ADCP	17
Figure 3.1 Flow chart of research methodology	18
Figure 3.2 Study area location on map	19
Figure 3.3 Hydrographic survey maps (NRI, 2007)	21
Figure 3.4 Analysis of discharge flow for 5 years	22
Figure 3.5 Discharges for the Delta barrage and corresponding water level at Zefta barrage	ge
gauge from 2014 to 2018	22
Figure 3.6 Water levels at Delta barrage gauge and Benha gauge from 2014 to 2018	23
Figure 3.7 Bathymetry measurements at the Study area (Bend 6)	24
Figure 3.8 Illustration of a boat-mounted (ADCP) measuring discharge	25
Figure 3.9 Moving vessel with measurements system (A), RiverSurveyor program on lap	top
(B), DGPS system (C), ADCP installation on a boat (D)	25
Figure 3.10 3D Velocity measurements using RiverSurveyor software	26
Figure 3.11 The VMT GUI interface	27
Figure 3.12 Magnitude velocity and secondary velocity with vectors (cm/s) processed with	th
the VMT tool	28
Figure 4.1 Flow chart of Delfet3D modules	29
Figure 4.2 Coordinates system (left)- σ grid, (right)-Z grid (Deltares, 2011)	30
Figure 4.3 Definition of σ - coordinates system parameters	31
Figure 4.4 Modeling strategy steps	33
Figure 4.5 Curvilinear grid for Study reach (left), aspect ratio (right)	34
Figure 4.6 Orthogonality (left), smoothness (right)	34
Figure 4.7 Study reach bed bathymetry for year 2020	35
Figure 4.8 Study reach water level calibration	37
Figure 4.9 Velocity calibration process for Site no. 1 between measured and modeled val	ues
and its relation at three directions (X,Y,Z)	39
Figure 4.10 Velocity calibration process for Site no. 2 between measured and modeled va	lues
and its relation at three directions (X,Y,Z)	40
Figure 4.11 Velocity calibration process for Site no. 3 between measured and modeled va	lues
and its relation at three directions (X,Y,Z)	41
Figure 5.1 Magnitude velocity distribution corresponding to various flow conditions	44
Figure 5.2 Example of velocity magnitude in study reach bends	45
Figure 5.3 Water level distribution corresponding to various flow conditions	46
Figure 5.4 Water depth distribution corresponding to various flow conditions	47
Figure 5.5 Secondary velocity distribution corresponding to various flow conditions	
Figure 5.5 Secondary verocity distribution corresponding to various now conditions	48

Figure 5.7 Example of stream power in River bends	.51
Figure 5.8 Distribution of sinuosity index along study reach	.53
Figure 5.9 Distribution of bend tightness index along study reach	.53
Figure 5.10 Bathometry in 2007 (a), Bathometry in 2020 (b), morphological changes (c)	.54
Figure 5.11 Morphological changes along study reach bends	.55
Figure 5.12 Example of morphological changes in River bends	.56
Figure 5.13 Sample of secondary flow velocity at maximum flow (Bend 6)	.57
Figure 5.14 Secondary flow (simulated values) distribution along study reach bends	.58
Figure 5.15 Ratio of secondary flow to main flow along study reach bends	.58
Figure 5.16 Distribution of unit stream power along study reach bends in various flow	
scenarios	. 59
Figure 5.17 Relationship between bend tightness and secondary flow in various flow	
conditions	.61
Figure 5.18 Relationship between Bend scour depth and secondary flow in case of maximu	m
discharge	.61
Figure 5.19 Relationship between erosion rate and unit stream power in case of maximum	
discharge	.62
Figure 6.1 Sketch description illustrating bend scour top view (a), downstream cross-sectio	ns
(b)	.63
Figure 6.2 Comparison between measured and computed bend scour depths for selected	
equations	.66
Figure 6.3 Comparison between measured and calculated scour depths using the modified	
equations	.68
Figure 6.4 Scatter diagram for measured and calculated confluence scour depths using the	
developed equation and statistic values for the new equation	.70