

لتوثيق الإلكترونى والميكروفيلم

MONA MAGHRABY

لتوثيق الإلكترونى والميكروفيله

شبكة المعلومات الجامعية

MONA MAGHRABY

حامعة عين التوثيق الإلكترونى والميك نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات University University Information Nr جامعة عين شمس شبكة المعلومات الجامعية @ ASUNET يجب أن تحفظ هذه الأقراص المدمجة بعيدا عن الغبار ona maghr.

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Mechanical Power Engineering

PULSATING FLOW EFFECTS ON THE COMBUSTION CHARACTERISTICS

A Thesis submitted in partial fulfillment of the requirements of the degree of

Doctoral of Philosophy In Mechanical Engineering

(Mechanical Power Engineering)

BY

Ahmed Mohamed Mustafa Sayed

Master of Science in Mechanical Engineering

(Mechanical Engineering)

Faculty of Engineering, Cairo University, 2016

Supervised By

Prof. Dr. Mahmoud Mohamed Kamal Associate. Prof. Dr. Ashraf Mostafa Hamed Associate. Prof. Dr. Ahmed Mohamed Taher

> CAIRO, EGYPT (2021)

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Mechanical Power Engineering

PULSATING FLOW EFFECTS ON THE COMBUSTION CHARACTERISTICS

BY

Ahmed Mohamed Mustafa Sayed

Master of Science in Mechanical Engineering

(Mechanical Engineering)

Faculty of Engineering, Cairo University, 2016

Examiners Committee

Name and Affiliation Signature

Prof.Dr. Mahmoud Abdel Fattah EL-Qady Mechanical Power, El Azhar University

Prof.Dr. Mahmoud Abdel Rasheed Nosier Faculty of Engineering, Ain Shams University

Prof.Dr.Mahmoud Mohamed Kamal Faculty of Engineering, Ain Shams University

A.Prof. Dr. Ashraf Mustafa Hamed Faculty of Engineering, Ain Shams University

CAIRO, EGYPT 2021

Statement

This thesis is submitted as a partial fulfillment of Doctoral of Philosophy In Mechanical Engineering Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Ahmed Mohamed Mustafa

Signature

.....

Date:07 September 2021

Researcher Data

Engineer : Ahmed Mohamed Mustafa Sayed. Date of birth: 07 / 11 / 1984 Place of birth: Cairo. Last academic: Master of engineering in mechanical engineering. Field of specialization: Mechanical engineering. University issued the degree: Cairo University. Date of issued degree: 2016. Current job: Teaching Assistant.

Thesis Summary

An investigation was performed to increase the heat transfer rates from methane flames while simultaneously minimizing the soot and NOx emissions at extensive firing rates. The partially premixed flames responded favorably to the strain rate and the increase in temperature-soot interactions across the two reaction zones. Inverse flames with under-ventilation increased the temperature-soot interaction. Shifting the peak turbulent kinetic energy into the lean side in normal flames increased both the radiation and convection heat transfer rates respectively by13 and 9%. On the other hand, shifting the peak turbulent kinetic energy into the rich side reduced the NOx emissions. Exciting two concentric streams increased the turbulent kinetic energy and provided an innovative control of the pulsation effects. The soot growth and oxidation rates were thus controlled by setting the phase shift between the two streams at 20° and the corresponding frequency ratio at 4.0 such that the total

Acknowledgment

All my thanks and praise goes to **ALLAH** for his help during the completing of this work.

I wish to express my thanks and love to *my Mother (Allah gives her all the best) and my Father*, without their love and support, I would never be able to complete this work.

Sincere thanks to *Prof. Dr. Mahmoud Mohamed Kamal, Dr. Ahmed Mohamed Taher*, and *Associate Prof. Dr. Ashraf Mustafa Hamed* for their kind supervision, encouragement and valuable suggestions throughout this work.

I would like also sincere thanks to my friend teaching assistant Mahmoud Ahmed Essam at Cairo University, Engineer Hesham Ahmed at Ain Shams University and my friend teaching assistant Ahmed Abdel Naeem at Helwan University for their help throughout the work.

I would like also sincere thanks to all technical staff in combustion tests laboratories in Ain Shams University for his help during the completing of the experimental work.

> Ahmed Mohamed Mustafa Cairo, Egypt GUNE. 2021

Table of content

ACKNOWLEDGEMENT	Ι
TABLE OF CONTENT	II
LIST OF TABLES	V
LIST OF FIGURES	VI
LIST OF NOMENCLATURES	XI
LIST OF SYMBOLS	Х
ABATRACT	XIII
CHAPTER (1): INTRODUCTION	
1.1 Motivation	1
1.2 Current Work Active Control Technique	2
1.3 Thesis Outline	4
CHAPTER (2): THEORETICAL BACKGROUND	
2.1 Pulse Combustion Operation	6
2.2 Heat Transfer and Turbulence of Pulse Combustion	7
2.3 Effect of Pulsation on the Flame	8
2.4 Nitrogen Oxide (NOX) of Pulse Combustion	10
2.5 Applications of Pulsating Combustion	11
CHAPTER (3): LITERATURE REVIEW	
3.1 Introduction	20
3.2 Review of the Previous Work	20
3.2.1 Oscillating flames in open tubes	20
3.2.2 Combustion enhancement of a gas flare using acoustical excitation	21
3.2.3 Effects of externally applied pulsations on LPG flames at low and high fuel flow rate	22
3.2.4 Nonlinear response of buoyant diffusion flame under acoustic excitation	23
3.2.5 Flow visualization study of a diffusion flame under acoustic excitation	23
3.2.6 An Experimental Investigation of Heat Transfer Characteristics of Pulsating Flow in Pipe	24
3.2.7 Structures induced by periodic acoustic excitation of a diffusion flame	25
3.2.8 Scope of the present study	26

CHAPTER (4): EXPERIMENTAL TEST RIG AND NUMERICALSET-UP

4.1 Introduction	27
4.2 Test Rig Construction	27
4.3 Instruments of the Measurement Processes	34
4.4 Procedures of the Flame Temperatures Measurement	37
4.5 Procedure of the Emissions Measurement	40
4.6 The Errors Analysis	41
4.7 Procedure of Calculating the Different Magnitudes	42
4.8 Numerical Simulation	44
CHAPTER (5): PRELIMINARY RESULTS OF FLAME DOMINAT FREQUCNY AND PULSATION EFFECTS	
5.1 Introduction	47
5.2 Calculation of Average of Recorded Readings	48
5.3 Strouhal Number and Frequency of the Pulsating Flow for the Partially Premixed and Diffusion Flame	40
5.4 Effect of the Pulsation on the Frequency Response of the Partially Premixed Flame Temperature.	49 49
5.5 Effect of the Pulsation on Frequency Response of the Diffusion Flame Temperature	55
5.6 Variation of the Dominant Frequencies in the Longitudinal Direction of the Combustion Chamber	59
5.7 Effect of Strouhal Number on the Flame Temperatures	64
5.8 Effect of the Pulsating Flow on Radiation, Convection and Total Heat of the Partially Premixed Flame	85
5.9 Gases Exhaust Analysis of the Partially Premixed Flame	86
5.10 Effect of the Pulsating Flow on the Combustion Efficiency at the Partially Premixed Flame	87
5.11Effect of the Pulsation on the Diffusion Flame Temperature.	88
5.12 Effect of the Pulsating Flow on Radiation, Convection and Total Heat of the Diffusion Flame.	110
5.13Gases Exhaust Analysis of the Diffusion Flame	111
5.14Effect of the Pulsating Flow on the Combustion Efficiency at the Diffusion Flame Case	112
CHAPTER (6): ADVANCED RESULTS AND DISCUSSIONS	
6.1 Introduction	114
6.2 Effect of Pulsation on the Flow Development in the Combustor	114
6.3 Effect of Pulsation on the Flame Shape, Thermal Characteristics and Heat Transfer	125
6.4 Effect of Pulsation on the Soot Production and Emissions	122

CHAPTER (7): CONCLUSIONS AND FUTURE WORK

7.1 Introduction	140
7.2 Conclusions	140
7.3 Recommendations for Future Works	141
REFERENCES	142
APPENDICES	146

List of Tables

Table 4.1	Measurement uncertainty analysis	29
Table 4.2	Experimental parameters	30
Table 4.3	Frequency of the pulsator and Strouhal number of the pulsating flow for the partially premixed flame	39
Table 4.4	Frequency of the pulsator and Strouhal number of the pulsating flow for the diffusion flame	39
Table 4.5	The errors for the emissions measurements	41
Table 4.6	All errors for defined measurements	41
Table 5.1	Stability of the time-averaged flame temperatures values	48
Table 5.2	Strouhal number of the pulsating flow, speed and frequency of the pulsator for the partially premixed flame	48
Table 5.3	Dominant frequencies at the first plane for partially premixed flame	50
Table 5.4	Dominant frequencies at the second plane	52
Table 5.5	Dominant frequencies at the third plane	53
Table 5.6	Dominant frequencies at the fourth plane	53
Table 5.7	Dominant frequencies at the fifth plane	54
Table 5.8	Dominant frequencies at the first plane for diffusion flame	55
Table 5.9	Dominant frequencies at the second plane	56
Table 5.10	Dominant frequencies at the third plane	56
Table 5.11	Dominant frequencies at the fourth plane	57
Table 5.12	Dominant frequencies at the fifth plane	58
Table 5.13	Variation of the dominant frequencies at the non- pulsating flame (St=0)	59
Table 5.14	Variation of the dominant frequencies at the pulsating flame (St= 0.005)	59
Table 5.15	Variation of the dominant frequencies at the non- pulsating flame (St=0)	61
Table 5.16	Variation of the dominant frequencies at the pulsating flame (St= 0.004)	62
Table 5.17	Variation of the time-averaged flame temperatures (°C) at the first plane	64
Table 5.18	Variation of the overall time-averaged flame temperatures at the first plane	66
Table 5.19	Variation of the time-averaged flame temperatures (°C) at the second plane	67
Table 5.20	Variation of the overall time-averaged flame temperatures (°C) at the second plane	68
Table 5.21	Variation of the time-averaged flame temperatures (°C) at the third plane	69
Table 5.22	Variation of the overall time-averaged flame temperature (°C) at the third plane	70

Table 5.23	Variation of the time-averaged flame temperatures (°C) at the fourth plane	7
Table 5.24	Variation of the overall time-averaged flame temperature (°C) at the fourth plane	,
Table 5.25	Variation of the time-averaged flame temperatures (°C) at the fifth plane	,
Table 5.26	Variation of the average flame temperatures (°C) at center of the flame	,
Table 5.27	Variation of the maximum average flame temperature at center of the flame	
Table 5.28	Variation of the average flame temperatures (°C) at r=10 mm	
Table 5.29	Variation of the maximum average flame temperature at r= 10 mm	
Table 5.30	Variation of the time- average flame temperatures (°C) at r=20 mm	
Table 5.31	Variation of the maximum average flame temperature at r= 20 mm	
Table 5.32	Variation of the time-averaged flame temperatures (°C) at r=30 mm	
Table 5.33	Variation of the maximum time averaged flame temperature at $r = 30 \text{ mm}$	
Table 5.34	Variation of the time-averaged flame temperatures (°C) at r=40 mm	
Table 5.35	Variation of the maximum time-averaged flame temperature at r= 40 mm	
Table 5.36	Variation of the maximum time-averaged flame temperature in the combustion chamber for the partially premixed flame	
Table 5.37	Emissions of the partially premixed flame	
Table 5.38	Combustion efficiency of the partially premixed flame	
Table 5.39	Variation of the time-averaged flame temperatures (°C) at the first plane	
Table 5.40	Variation of the overall time-averaged flame temperatures (°C) at the first plane	
Table 5.41	Variations of the time-averaged flame temperatures (°C) at the second plane	
Table 5.42	Variation of the overall time-averaged flame temperatures (°C) at the second plane	
Table 5.43	Variations of the time-averaged flame temperatures (°C) at the third plane	
Table 5.44	Variation of the overall time-averaged flame temperatures (°C) at the third plane	
Table 5.45	Variations of the time-averaged flame temperatures (°C) at the fourth plane	
Table 5.46	Variation of the overall time-averaged flame temperature (°C) at the fourth plane.	
Table 5.47	Variations of the time-averaged flame temperatures (°C) at the fifth plane	
Table 5.48	Variation of the overall time-averaged flame temperatures (°C) at the fifth plane	
Table 5.49	Variation of the maximum time-averaged flame temperatures for the partially premixed flame.	
Table 5.50	Variation of the time averaged flame temperatures (°C) at the center]
Table 5.51	Variation of the maximum average flame temperatures at the center]

Table 5.52	Variation of the time averaged flame temperatures (°C) at r=10 mm	102
Table 5.53	Variation of the maximum average flame temperatures at r= 10 mm	103
Table 5.54	Variation of the time averaged flame temperatures (°C) at r=20 mm	104
Table 5.55	Variation of the maximum average flame temperature at r= 20 mm	105
Table 5.56	Variation of the time-averaged flame temperatures (°C) at r=30 mm	105
Table 5.57	Variation of the maximum average flame temperature at r= 30 mm	106
Table 5.58	Variation of the time-averaged flame temperatures (°C) at r=40 mm	107
Table 5.59	Variation of the maximum time-averaged flame temperature at $r = 40 \text{ mm}$	108
Table 5.60	Variation of convection and radiation and total heat (Joule) at different Strouhal number.	110
Table 5.61	Emissions of the diffusion flame	111
Table 5.62	Combustion efficiency for the diffusion flame	112