

لتوثيق الإلكترونى والميكروفيلم

HANA γ

لتوثيق الإلكترونى والميكروفيله

شبكة المعلومات الجامعية

HANAA ALY

لتوثيق الإلكترونى والميكروفيلم

حامعة عين التوثيق الإلكترونى والميكر نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات Junersity Information Ner-جامعة عين شمس شبكة المعلومات الجامعية @ ASUNET يجب أن تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

3D Tomosynthesis Versus 2D Mammography in Detection of Different Breast Lesions

Thesis

Submitted for partial fulfilment of M.D. Degree in Radiodiagnosis

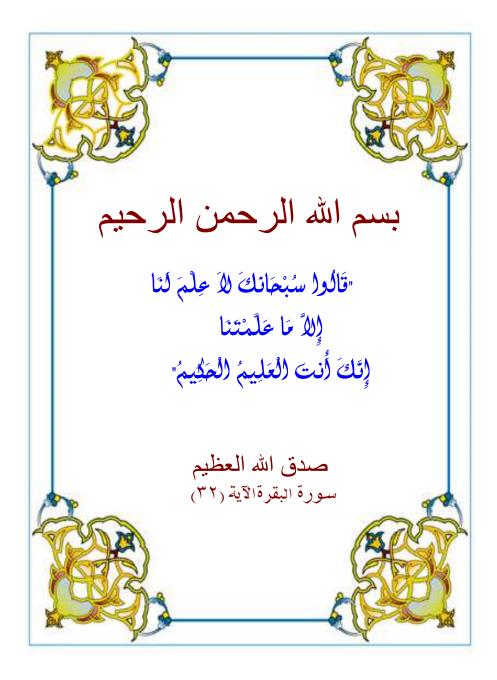
^Bγ Samia Aboelnour Abdeltawab

MSC Radiodiagnosis

Supervised by

Prof. Dr. Faten Mohamed Mahmoud

Professor of Radiodiagnosis Faculty of Medicine - Ain Shams University


Dr. Wafaa Rafat Abdelhamid

Lecturer Radiodiagnosis Faculty of Medicine - Ain Shams University

Dr. Suzan Farouk Ibrahim

Lecturer Radiodiagnosis Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2021

First and foremost thanks to Allah

In these short paragraphs I am trying to acknowledge the efforts people offered for this work to be accomplished. In fact, the MD thesis presented here would not have been possible without the help of many others.

I am mostly grateful to my dear **Prof. Dr. Faten Mohamed Mahmoud**, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University for her advice, endless support, understanding and providing me the freedom to conduct research throughout the course of this thesis. She gives me the best example for the researcher Professor in terms of productivity and honesty.

I would like to send special thanks for to Dr. Wafaa Rafat Abdelhamid, Lecturer of Radiodiagnosis, Ain Shams University, and Also to Dr. Suzan Farouk Ibrahim, Lecturer of Radiology, Faculty of Medicine, Ain Shams University, for their great support, and valuable assistance throughout the whole work.

Special thanks to **my dear Husband** for being always beside me and for his unfailing support and continuous encouragement.

Contents

	Page
Introduction	1
Aim of the Work	3
Review of Literature	
Chapter (1): Anatomy of the Breast	4
Chapter (2): Pathology of Breast Lesions	15
Chapter (3): Technique	47
Digital mammography	47
Digital breast tomosynthesis	55
Patients and Methods	62
Results	69
Illustrative cases	87
Discussion	
Summary and Conclusion	122
References	125
Arabic Summary	

List of Abbreviations

Abb.	Full Term
2DDM	Two-dimensional digital mammography
3DDT	Three Dimensional Digital Tomosynthesis
ACR	American College of Radiology
AUC	Area under curve
BIRADS	Breast imaging reporting and data system
СС	Craniocaudal
DBT	Digital Breast Tomosynthesis
DCIC	Ductal carcinoma in situ
DM	Digital mammography
FFDM	Full-field digital mammography
FN	False negative
FP	False positive
IDC	Invasive ductal carcinoma
ILC	Invasive lobular carcinoma
MGD	Mean glandular dose
MLO	Medio lateral-oblique
NPV	Negative predictive value
PPV	Positive predictive value
TN	True negative
ТР	True positive

List of Tables

Table	Title	Page
2.1	Benign Breast Disorders and Breast Cancer	17
	Risk	
5.1	The distribution of patients according to the	72
	ACR breast density classification	
5.2	Distribution of all lesions according to tissue	73
	specific diagnosis and close follow up	
	examination	
5.3	Presentation of all lesions on mammography	75
5.4	Presentation of all lesions on tomosynthesis	76
5.5	A total of 17 and 27 masses were detected	78
	by mammography and tomosynthesis	
	respectively	
5.6	Diagnostic performance of tomosynthesis in	79
	Characterization of breast masses according	
	to shape	
5.7	Diagnostic performance of mammography in	79
	characterization of breast masses according	
	to shape	
5.8	Diagnostic performance of mammography in	80
	characterization of breast masses according	
	to the margins of the mass	
5.9	Diagnostic performance of mammography in	81
	characterization of breast masses according	
	to the margins of the mass	

List of Tables

Table	Title	Page
5.10	Diagnostic performance of tomosynthesis in	82
	characterization of breast masses according	
	to the density of the mass	
5.11	Diagnostic performance of mammography in	82
	characterization of breast masses according	
	to the density of the mass	
5.12	Distribution of all lesions according to their	83
	BIRADS score on mammography	
5.13	Distribution of all lesions according to their	84
	BIRADS score on tomosynthesis	
5.14	Diagnostic performance of mammography in	86
	characterization of breast masses according	
	to the BIRADS score	
5.15	Diagnostic performance of tomosynthesis in	86
	characterization of breast masses according	
	to the BIRADS score	

List of Figures

Figure	Title	Page
1.1	Overview of the breast	4
1.2	Normal female breast anatomy	6
1.3	Breast quadrants	7
1.4	Arterial supply of the breast	9
1.5	Normal lymphatic anatomy of the breast	12
1.6	Normal mammographic breast anatomy	14
3.1	Descriptors for the posterior nipple line	53
3.2	An ideal CC view with retromammary space and pectoralis muscle	54
3.3	Bilateral MLO show pectoralis muscle forming "V" when viewed as mirror images	55
3.4	Physical principles	56
5.1	Box-and-whisker plot of the ages of all patients	69
5.2	Bar chart showing the distribution of patients according to the indication for the examination	70
5.3	Clustered column chart showing the distribution of patients with appositive and negative family history in benign and malignant patient groups	71
5.4	Bar chart showing the distribution of patients according to the ACR breast density classification	72

Figure	Title	Page
5.5	Bar chart showing the distribution of all	74
	breast lesions according to tissue specific	
	diagnosis	
5.6	Distribution of all lesions according to their	83
	BIRADS score on mammography	
5.7	Distribution of all lesions according to their	84
	BIRADS score on tomosynthesis	
6.1	Case 1: a) CC view 2D mammography	87
	b) CC view 3D tomosynthesis of left breast	
6.2	Case 2: a) MLO view 2D mammography	88
	b) MLO view 3D tomosynthesis of left	
	breast	
6.3	Case 3: a) CC view 2D mammography b)	89
	CC view 3D tomosynthesis c) CC view	
	another cut 3D tomosynthesis of right	
	breast.	
6.4	Case 4: a) CC view 2D mammography b)	91
	CC view 3D tomosynthesis of right breast	
6.5	Case 5: a) MLO view 2D mammography	92
	b) MLO view 3D tomosynthesis of left	
	breast	
6.6	Case 6: a) MLO view 2D mammography	94
	b) MLO view 3D tomosynthesis of left	
	breast	
6.7	Case 7: a) CC view 2D mammography b)	96
	CC view 3D tomosynthesis of left breast	

🕮 List of Figures

Figure	Title	Page
6.8	Case 8: a) CC view 2D mammography b)	98
	CC view 3D tomosynthesis of right breast	
6.9	Case 9: a) CC view 2D mammography b)	100
	CC view 3D tomosynthesis of both breasts	
6.10	Case 10: a) CC view 2D mammography	102
	b) CC view 3D tomosynthesis of the left	
	breast	

3D Tomosynthesis versus 2D Mammography in Detection of Different Breast Lesions

Abstract

Background: Breast cancer is considered the most serious lesion among different breast lesions. Mammography is the corner stone for screening for detection of breast cancer. It has been modified to digital mammography then to tomosynthesis. Tomosynthesis is an emerging technique for diagnosis and screening of breast lesions.

Aim: This study aims at interrogating whether addition of digital breast tomosynthesis (DBT) to digital mammography (DM) helps in better characterization of different breast lesions.

Methods: This is a prospective study carried on 38 female patients according to our inclusion criteria. All patients were evaluated by DM alone and then with addition of DBT and were classified according to age, complain, family history, breast density and characterization of lesion. Breast imaging reporting and data System (BIRADS) scoring was assigned for each case which was correlated with the final diagnosis.

Results: DM identifies 32 lesions while DBT with DM identify 37 lesions. Regarding DM findings alone, 17 lesions are characterized as masses, 5 as asymmetry, 2 as architectural distortion, 7 as microcalcification and 1 as macrocalcification. While with addition of DBT to DM helped in better morphological characterization of 27 lesions are characterized as masses, 1 as asymmetry, 1 as architectural distortion, 7 as microcalcification and 1 as macrocalcification. So, there is statistically significant with addition of DBT to DM in detection of different breast lesions comparing to DM alone. The Sensitivity, specificity, AUC ,positive and negative predictive values were significantly higher with the addition of DBT to DM (100%, 90.5%, 0. 952, 90 % and 100 %, respectively) than that of DM (77.8%, 80.9%, 0.794, 77.8 % and 80.9%, respectively) for all breast lesions.

Conclusions: DBT is an encouraging imaging modality for better detection and characterization of different breast lesions when incorporating its image information with DM. This leads to early detection of breast cancer, performance improvement of radiologists and saving time by reduction of recall rate.

Keywords: Breast lesions, Digital mammography, Digital Tomosynthesis.

Introduction

In the 1970s, Mammography gained widespread acceptance as a breast screening tool for cancer detection. It was shown to reduce mortality rate. From that time, technological advancements have driven the evolution from analog film mammography to full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT) (**Tirada et al., 2019**).

DBT is a 3D reconstruction technique of mammographic images that gives the possibility to reduce the breast tissue superposition (**Ortenzia et al., 2018**).

The projection images obtained are then reconstructed into thin slices of 1 mm thickness each, which minimizes the effect of overlapping tissue and helps in detection of subtle abnormalities (**Yang et al., 2013**).

The mean radiation dose to the breast for the multiple projections of a single tomosynthesis procedure is equivalent to that received during 2D mammography (**Feng and Sechopoulos, 2012**).

1