

لتوثيق الإلكترونى والميكروفيلم

HANA γ

لتوثيق الإلكترونى والميكروفيله

شبكة المعلومات الجامعية

HANAA ALY

لتوثيق الإلكترونى والميكروفيلم

حامعة عين التوثيق الإلكترونى والميكر نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات Junersity Information Ner-جامعة عين شمس شبكة المعلومات الجامعية @ ASUNET يجب أن تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Cairo University Faculty of Veterinary medicine Department of Microbiology

The Vaccines and Their Potential Impact on Antimicrobial Resistance

A thesis presented by:

Basma Mohamed Hamed Ahmed

(B.V.Sc., Faculty of Vet. Med., Cairo University, 2018)

For

The degree of Master in Veterinary Sciences

(Microbiology)

Under the Supervision of

Prof. Dr. Mona Ibrahem El Enbaawy

Professor of Microbiology Faculty of Veterinary Medicine Cairo University

Dr. Eman Ragab Mohamed Mostafa

Assistant Professor of Microbiology

Faculty of Veterinary Medicine

Cairo University

2022

Cairo University Faculty Of Veterinary Medicine Microbiology Department

Approval sheet

This is to approve that the thesis titled:

The Vaccines And Their Potential Impact On Antimicrobial Resistance

And presented by

Basma Mohamed Hamed Ahmed

To Cairo University

For MVSC degree

(Microbiology)

Has been approved by the examining Committee:

Prof.Dr. Ahmed Ahmed Refat Khafag

Ahned Khalag

Professor of Microbiology

Faculty of Veterinary Medicine

Suez Canal University

Prof.Dr.Sherif Abdel Monaem Omar Marouf

Professor of Microbiology

Faculty of Veterinary Medicine

Cairo University

Prof. Dr. Mona Ibrahem El Enbaawy

Professor of Microbiology

Faculty of Veterinary Medicine

Cairo University

Dr. Eman Ragab Mohamed Mostafa

Assistant Professor of Microbiology Faculty of Veterinary Medicine Cairo University

Mona EL- EABaauly

Enar Ragab

Supervision Sheet

Prof. Dr. Mona Ibrahem El Enbaawy

Professor of Microbiology Faculty of Veterinary Medicine Cairo University

Mora EL- Elshaauly

Dr. Eman Ragab Mohamed Mostafa

Assistant Professor of Microbiology Faculty of Veterinary Medicine Cairo University

Enar Ragab

Cairo University Faculty of Veterinary Medicine Department of Microbiology

Name: Basma Mohamed Hamed Ahmed

Nationality: Egyptian.

Date of birth: 9/2/1995

Scientific degree: M.V.Sc. (Bacteriology, Mycology and Immunology)

Title of thesis: The Vaccines and Their Potential Impact on Antimicrobial Resistance.

Keywords: Antimicrobial Resistance; Poultry; *Escherichia Coli;* Chitosan; Nanoparticles; EIISA; Virulent genes; Immune response.

Abstract

Antimicrobial resistance (AMR) is now recognized as a major threat to global health. The present work aims to study the role of vaccine against AMR in broiler chickens using live avirulent multi-drug resistant *E. coli* vaccine also, investigate the additive effect of chitosan nanoparticles either as encapsulated or loaded form in another two live inactivated *E. coli* vaccine. Different samples from internal organs were collected from broiler from 10-38 day old. APEC was isolated by conventional culture methods and VITEK@ 2 COMPAT (bioMérieux, France) with prevalence ratio 67.5 %. Genes associated with virulence (*iutA, fimC, and papC*) were identified by PCR with the prevalence of 84.4%, 74%, and 54.8% of cases, respectively. Concerning antibiotic sensitivity test among the most resistant drugs, the highest rate of resistance was against Ampicillin (AM) (100%), Trimethoprim-Sulfamethoxazole (80%)

Ampicillin-sulbactam (AMS) (78.5), Ceftazidime (CAZ) 75.5%, cefepime (CPM) 74 %. The vaccinal strain was selected to be avirulent and multidrug resistant. Four groups were designed for *E. coli* experimental vaccinal trial. The first was a negative control, the second was chitosan capsulated-antigen, the third was chitosan loaded-Ag, and the last group was immunized with live avirulent strain. Experiment vaccination revealed that antibody titer was measured by indirect ELISA and confirmed results by MAT shows that Only group 2 and 3 Significantly produced the highest response among groups. Also, the recovery of APEC from internal organs was the lowest in group 2,3 in comparison with group 4. It could be concluded that, administration of *E. coli* killed vaccine either loaded or encapsulated with chitosan nanoparticles promoted humeral immune response and antibody production as well as reduced APEC challenge loads. Also, *E. coli* vaccines based on chitosan are therefore a viable alternative to current vaccines for poultry.

Dedication

To My Mum & Dad

To my brother Ahmed, sisters Yasmine & Bassant

and my friends.

Who always be my side whenever I need.

Having you in my life is such a precious gift! I feel extremely lucky and privileged

Thank you.

Acknowledgments

In the first place, I would like to declare my genuine gratitude and praises to the merciful **ALLAH** who provided me with everything I have, and without his blessing, mercy. I shall achieve nothing.

Nothing can illustrate my appreciation, profound gratitude and extreme respect to **Prof. Dr. Mona El. enbaawy** Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University for whom I am blessed to be one of her students. Thank you for planning this research and for your endless encouragement and supervision. Thank you for pushing me forward to be impactful and proactive. Thank you for always being so kind with your constructive criticism. I am truly honored and proud to be one of your students.

I am intensely grateful to **DR**, **Eman Ragab** Assistant Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University for her help *L* kind supervision, endless patience, valuable advice and assistance, provision of so much of her time to follow me up and her continuous encouragement.

I would like to acknowledge all the staff members of the Department of Microbiology, Cairo University.

No words are enough to thank my dear collages **especially Dr. Sabah Ali** for her continuous support *L* help.

Table of Contents

Chapter	Title	Page
1.	Introduction	1
2.	Review of literature	4
2.1	Antimicrobial resistance in farm animals	5
2.2	The mechanism by which bacteria resist antibiotics	8
2.2. a	Efflux Pumps	9
2.2. b	Antibiotic Inactivation	9
2.2.c	Modification of the Target	10
2.2. d	Limiting entry of antimicrobial agents	10
2.2. e	Mutation	10
2.3	Alternatives to the use of antibiotics in the animals feed industry	12
2.3. a.	New Antibiotics	12
2.3. b.	Gene editing with CRISPR/Cas.	13
2.3. c.	Bacteriophages as potential antimicrobial agents	14
2.3. d.	Microbial disease control using engineered antimicrobial peptides	16

2.3. e.	Virus-like nanoparticles designed to	17
	kill bacteria (Nano-antibiotics)	
2.3. f.	Control of intestinal pathogens in	18
	domestic animals and humans by	
	antibodies	
2.3. g.	Encapsulation of antibodies to prevent	18
	their inactivation in the gastrointestinal	
	tract	
2.3. h.	Vaccine as weapon against antimicrobial resistance	20
2.4.	Nanotechnology and vaccine	23
	development.	
2.4. a.	Chitosan as a natural polymeric NP:	24
3.	Papers	27
3.1.	Antibiotic resistance pattern of avian	28
	pathogenic Escherichia coli in broilers	
	belonging to some Egyptian farms	
3.2.	Investigation of Antibiotic resistance	41
	pattern using VITEK®2 and virulence	
	determinants in avian pathogenic	
	Escherichia coli (APEC) in Egypt.	
3.3.	Assessment the level of protection	62
	against avian pathogenic <i>E. coli</i>	
	conferred by chitosan nanoparticle	
	vaccination in broiler chicken upon experimental challenge and their	
	Potential Effect To reduce AMR.	

4.	Discussion	74
5.	Conclusion	82
6.	Summary	84
7.	References	86
9.	المستخلص	2
10.	الملخص	1

List of tables

Table	Title	Page
number		number
1.	Sequence of primers used in this study (16srRNA, <i>iutA</i> , <i>papC</i> , <i>fimC</i>)	47
2.	Percentages of antibiotic susceptibility of isolated E. coli from broiler with colisepticemia in different governates in Egypt.	48
3.	Zeta potential of the prepared nanoparticles and nanovaccines	67
4.	Results of challenge test with <i>E. coli</i> serotypes O78 among chickens vaccinated with the prepared vaccines	67
5.	Recovery of <i>E. coli</i> from challenged birds.	68
6.	Mean ELISA titer against <i>E. coli</i> in sera of vaccinated and negative control chickens.	70
7.	Mean MAT titer against <i>E. coli</i> in sera of vaccinated and negative control group	71

List of figures

Figure	Figure name	Page
number		number
1	Trends in antibiotic approvals and AMR	6
	development over time: the introduction of new	
	antibiotics over time, and the emergence of the first	
	resistant bacteria	
2	Factors leading to rapid development and use of	8
	antibiotics increasing antibiotic-resistance among	
	pathogens, and the routes by which resistant	
	pathogens enter human and animal food chain.	
3	General antimicrobial resistance mechanisms.	9
4	Gene silencing and editing with CRISPR.	14
5	Bacteriophage Therapy.	15
6	Passive immunization with hyperimmune egg-yolk	19
	antibodies as a prophylaxis and treatment of	
	intestinal microbial diseases in domestic animals.	
7	Decline of the antibiotic era and rise of vaccines	20
	based on licensed products in the US.	